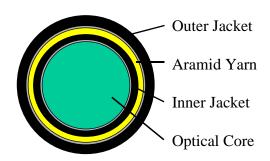

PO Box 3127 Spartanburg, SC 29304 Tel: 1 800 235 3423


Fax: 1 864 433 5560

Specification DNA-31734 Tracking Resistant ADSS Cable

Representative 8 unit Fiber Optic Core

Representative AFL-ADSS® Fiber Optic Cable

AC024AP6821BD0

24 Corning® SMF-28e+™ LL Singlemode

	Sag / Tension Performance											
Span Length (ft) 1,000												
			Add'l Input Data				Resultant Data					
	Wind	Radial Ice	Load	Vert.	Horiz.	Vector	Vert.	Horiz	Vector	Tension		
Condition	(mi/hr)	(inches)	(lbs/ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(lbs)		
Installation				10.0			10.00		10.0	1,580		
Ice Alone												
Wind Alone	93.0						4.59	39.9	40.1	3,441		
Ice and Wind												
NESC Light	60.0		0.1				7.32	26.4	27.4	2,386		
Other												

Standards						
Designed and Manufactured in accordance with the following:						
Cable	IEEE 1222					
Fiber	IEC 60793, ITU-T G.65x Series					
Color Code	ANSI/EIA 359-A, 598-A, IEC 60304					

	Mechanic	al / Physic	al Detail	S	
Approximate Cable Diameter		15.1	mm	0.594	in
Approximate Cable Weight		188	kg/km	0.126	lbs/ft
Maximum Rated Cable Load (M	RCL)	2,299	kg	5,069	lbs
Approximate Cable Breaking Str	ength	3,677	kg	8,106	lbs
Minimum Bending Radius	Static	16	cm	6	in
	Dynamic	31	cm	12	in
Coefficient of Linear Expansion		6.24E-06	1/°C	3.47E-06	1/°F
Cable Modulus	Initial	11.45	kN/mm²	1,660.2	kpsi
	Final	12.34	kN/mm²	1,790.4	kpsi
	10 Year	9.54	kN/mm²	1,383.5	kpsi
Environmental Temperature Rec	commendations				
	Storage	-50 to +70	°C	-58 to +158	°F
	Operation	-40 to +70	°C	-40 to +158	°F
	Installation	-30 to +70	°C	-22 to +158	°F

Optical Details

Attenuation Characteristics for Corning® SMF-28e+™ LL Singlemode fibers

Max Individual

0.35 dB/km 1310 nm 0.25 dB/km 1550 nm

48 Fiber AD	SS Core (8 - 6 fiber buffer tubes)	Fiber
Unit	Fiber Type	Count
Blue	Corning® SMF-28e+™ LL Singlemode fibers	6
Orange	Corning® SMF-28e+™ LL Singlemode fibers	6
Green	Corning® SMF-28e+™ LL Singlemode fibers	6
Brown	Corning® SMF-28e+™ LL Singlemode fibers	6
	Filler	N/A
	Total Fiber Count	24

Standard Fiber Color Code

Fiber No.	1	2	3	4	5	6	7	8	9	10	11	12
Color	Blue	Orange	Green	Brown	Slate	White	Red	Black	Yellow	Violet	Rose	Aqua

- 1) Designs with more than 12 fibers per tube will use the standard color code and binders for identification of the fibers.
- Designs with mixed fiber types will have multimode or NZDS fibers in the first tube(s) followed by single-mode fibers in the last tube(s).

Installation and Handling Recommendations

Installation and cable preparation procedures are outlined in the AFL documents listed below. Contact AFL to request copies.

Recommended Installation Procedures for All-Dielectric, Self-Supporting (ADSS) Fiber Optic Cable AFL-ADSS® Fiber Optic Cable Installation Video

Installation Instructions for Installing All-Dielectric, Self-Supporting (ADSS) in an AFL Telecommunications Splice Enclosure

Fiber Optic Cable Receiving, Handling and Storage. Document ACS-WI-809

Quick Reference Installation Notes									
Approximate Cable Diameter	15.10	mm	0.594	in					
Maximum Stringing Tension (at tensioner)*	735	kg	1,621	lbs					
Minimum Bull Wheel Diameter	106	cm	42	in					
Stringing Sheave Diameter**	61	cm	24	in					
Minimum Bending Radius									
Cable									
Static (No load)	16	cm	6	in					
Dynamic (under tension)	31	cm	12	in					
Fiber									
After Installation (Static)	3.8	cm	1.5	in					
Plastic Buffer Tube									
After Installation (Static)	8	cm	3	in					

^{* -} The stringing tension is always measured at the tensioner side. In general the maximum stringing tension should be a half of the maximum sagging tension and never should exceed 20% RBS of the ADSS Cable.

Reference AFL's "Recommended Installation Procedures for All-Dielectric, Self-Supporting (ADSS) Fiber Optic Cable" for detailed installation instructions.

Shipping Reels													
Reel	FL	TR	DR	OW	Tare	FL	TR	DR	OW	Tare	Capacity		
Туре		(cm)		(kgs)	(n)		(lbs)	(meters)	(feet)		
Wood	147	81	71	97	200	58	32	28	38	441	4,210	13,810	
Wood	168	91	91	107	260	66	36	36	42	573	5,640	18,500	
Wood	183	91	91	107	300	72	36	36	42	662	7,000	22,960	
Wood	213	86	89	104	385	84	34	35	41	849	7,000	22,960	
Steel	152	81	81	97	345	60	32	32	38	761	4,140	13,580	
Steel	183	91	102	107	540	72	36	40	42	1,191	6,690	21,940	
Steel	213	114	107	130	773	84	45	42	51	1,704	7,000	22,960	

 ${\sf FL-Flange\ Diameter;\ TR-Inside\ Traverse\ Width;\ DR-Drum\ Diameter;\ OW-Outside\ Overall\ Width}$

Arbor Hole Diameter: Wood: 3-1/8in (7.9cm)

Steel: 3in (7.6cm)

Maximum lengths shown are the longest lengths that AFL offers. Longer lengths may be possible.

Ordered lengths should include a distribution of lengths, i.e., all reels cannot be ordered at the maximum. A typical reel length distribution is as follows:

6000m - 7000m ~ 15% of reels

4500m - 6000m ~ 55% of reels

2500m - 4500m ~ 25% of reels

<2500m ~ 5% of reels

Wood reels with flex-wrap covering are standard. Non-returnable steel reels and/or wood lagging are available upon request. Additional reel sizes may be available upon request.

Steel reels are recommended for long term storage. Reference AFL's "Fiber Optic Cable Receiving, Handling and Storage" document for additional information.

^{** -} The value indicated is for the first and last structures of the pull and is based on 40 times the diameter of the ADSS cable. Smaller diameters can be used at tangent structures. Reference AFL's installation instructions for more details.

The Screen Inputs for ADSS cables in PLS Cad

Cable Data										
Name:										
	AEL ADCC DA	IA 21724	A C024 A D6921 D D	0						
Description:	AFL ADSS DNA-31734 AC024AP6821BD0 n^2) 0.2776 Unit weight (lbs/ft) 0.126									
Cross section area (in^2)										
Outside diameter (in)	0.594 Ultimate Tension (lbs)				8,10)6				
Temperature at which day	ta below were obta	ined	(deg F)		70					
Outer strands	Final modulus of		17,904							
	Thermal expansi	3.47E-04								
Generate Coefficients										
	Polynomial coefficients (all strain in %)									
	A0		A1 (psi/100)	A2	A3	A4				
Stress-strain			16,602							
Creep			13,835							
Core strands	Final modulus of	f elasticit	y (psi/100)							
(if different from	Thermal expansi	on coeff.	(/100 deg F)							
outer strands)										
	Polynomial coef	ficients (a	all strain in %)							
	A0		A1 (psi/100)	A2	A3	A4				
Stress-strain										
Creep										