Report of Groundwater Sampling and Analyses

For

JEA 5th Street West - Imeson Road To Melson Avenue Jacksonville, Florida

> MAE Project No. 0103-0018 December 12, 2019

> > **Prepared for:**

Prepared by:

3728 Philips Highway, Suite 208 Jacksonville, Florida 32207 Phone (904) 519-6990 Fax (904) 519-6992

December 12, 2019

Mr. Bruce A. Neu, P.E. Mott MacDonald Florida, LLC 10245 Centurion Parkway North, Suite 320 Jacksonville, Florida 32256

Subject: Report of Groundwater Sampling and Analysis JEA 5th Street West - Imeson Road to Melson Avenue Jacksonville, Florida MAE Project No. 0103-0018

Dear Mr. Neu,

Meskel & Associates Engineering, PLLC (MAE) is pleased to provide you with this Report of Groundwater Sampling for JEA 5th Street West - Imeson Road to Melson Avenue project, located in Jacksonville, Duval County, Florida.

If you have any questions or concerns, please contact the undersigned at (904) 519-6990.

Sincerely,

MESKEL & ASSOCIATES ENGINEERING, PLLC MAE FL Certificate of Authorization No. 28142

Gabriel S. Pastrana, P.E. Professional Associate

Scott A. Davidson, P.G. Principal, Director of Environmental Services

Distribution: Mr. Bruce A. Neu, P.E. – Mott MacDonald Florida, LLC

1 PDF

TABLE OF CONTENTS

Subject

Page

1.0	INTRODUCTION	.1
2.0	REPORT LIMITATIONS	.1
3.0	NEARBY CONTAMINATED SOURCES	.2
4.0	TEMPORARY MONITORING WELL INSTALLATION	.3
5.0	WATER SAMPLING AND ANALYTICAL RESULTS	.3
6.0	CONCLUSIONS AND PERMIT REQUEST	.4

FIGURES

Figure 1.	Site Location Map
Figure 2.	Temporary Monitoring Well Location Map–Pickettville Road and West 5 th Street
Figure 3.	Temporary Monitoring Well Location Map–Melson Avenue and West 5 th Street

TABLES

Table 1.	Groundwater Analytical Summary
lable 1.	Groundwater Analytical Summ

APPENDICES

Appendix A.	Regulatory Files for Estes Trucking and Paxon Express
Appendix B.	Soil Boring Logs and Well Completion Data
Appendix C.	Groundwater Sampling Logs
Appendix D.	Laboratory Analytical Report and Chain of Custody Record
Appendix E.	FDEP NOI Application for Non-Contaminated Sites and for Petroleum
	Contaminated Sites

Groundwater Sampling Report JEA 5th Street West - Imeson Road to Melson Avenue MAE Project No. 0103-0018

List of Acronyms and Abbreviations

- BDLBelow Detection Limits
- BLS.....Below Land Surface
- BTEXBenzene, Toluene, Ethyl benzene, and Xylenes
- COC.....Contaminants of Concern
- DODissolved Oxygen
- DPEDual Phase Extraction
- MAE.....Meskel & Associates Engineering, PLLC.
- EPAUnited States Environmental Protection Agency
- FACFlorida Administrative Code
- FDEPFlorida Department of Environmental Protection
- FL-PRO.....Florida Petroleum Residual Organic (testing method)
- GCTLGroundwater Cleanup Target Levels (as defined in 62-777, FAC)
- MSL.....Mean Sea Level
- MTBE Methyl Tert-Butyl Ether
- NADCNatural Attenuation Default Concentrations
- NPDES.....National Pollutant Discharge Elimination System
- NTUNephelometric Turbidity Units
- PAH.....Polycyclic Aromatic Hydrocarbons
- RAP Remedial Action Plan
- SVDFWScreening Values for Discharges into Fresh Waters
- SVESoil Vapor Extraction
- TRPH.....Total Recoverable Petroleum Hydrocarbons
- VCOVerbal Change Order
- VOAVolatile Organic Aromatics
- µg/L Micrograms per Liter

Report of Groundwater Sampling and Analysis JEA 5th Street West - Imeson Road To Melson Avenue Jacksonville, Florida

MAE Report No. 0103-0018

Prepared by:

MESKEL & ASSOCIATES ENGINEERING, PLLC 3728 Philips Highway, Suite 208 JACKSONVILLE, FLORIDA 32207

GEOLOGY BUSINESS LICENSE NUMBER – GB683

In accordance with the provisions of Florida Statutes Chapter 492, this Groundwater Sampling Report for the JEA 5th Street West - Imeson Road to Melson Avenue Project located in Jacksonville, Florida has been prepared under the direct supervision of a Professional Geologist registered in the State of Florida. This report was prepared in accordance with generally accepted professional practices pursuant to Chapter 492 of the Florida Statutes. The data, findings, recommendations, specifications or professional opinions were prepared solely for the use of the JEA and Mott McDonald Florida, LLC. Meskel & Associates Engineering, PLLC makes no other warranty, either expressed or implied, and is not responsible for the interpretation by others of these data.

Scott A. Davidson, P.G. Date Principal Geologist Licensed, Florida No. PG122

1.0 INTRODUCTION

Meskel & Associates Engineering, PLLC (MAE) has completed a groundwater sampling program to provide chemical background data to assist in the submittal of a Notice of Intent (NOI) to potentially discharge dewatering effluent to '*Waters of the State'* through the Florida Department of Environmental Protection (FDEP) under the auspices of the *Generic Permit for the Discharge of Produced Groundwater from Any Non-Contaminated Site Activity*, FAC 62-621.300(2). Based on the findings reported here in, a *Generic Permit for Petroleum Contaminated Site* under Chapter 63-621.300(1) may be required for a portion of the project.

General project information contained within the JEA Solicitation No. 112-18 was reviewed for this project. In addition, specific project details and proposed utility force main routes were provided in several emails from Mr. Bruce Neu, P.E. with Mott McDonald Florida, LLC. The site for the subject project is located Jacksonville, Florida. The general site location is shown on Figure 1.

Based on the provided information and our discussions with Mr. Neu, we understand that the JEA is installing a new 20-inch force main from Imeson Road to Melson Avenue in Jacksonville, Florida. There were originally three proposed routes for this project. The final route is along 5th Street West from Melson Avenue under I-295 to Pickettville Road, then north on Pickettville Road to the CSX Railroad easement and west along the easement to Imeson Road. The total length of this route is approximately 17,200 feet.

Currently, most of this drainage basin of the Buckman Wastewater Service area is connected by a series of 12-inch / 12-inch dual pipe and 16-inch single pipe force main segments to the 36-inch gravity trunk sewer at the Melson Avenue intersection with 5th Street West. The existing force mains are at capacity. It is proposed to install a parallel 20" force main from Imeson Road to Melson Avenue to relieve current flows and accommodate future flows from the west side of the service area.

The proposed 20-inch force main will be installed at Imeson Road and be installed west along the CSX RR easement to Pickettville Road. The force main will be installed south on Pickettville Road and head east following the existing double 12-inch mains on 5th Street to Melson Avenue. Along this alignment, there are multiple railroad crossings. In addition, the force main will need to be installed under I-295, Lane Avenue, Edgewood Avenue and West Palm Avenue. At the Edgewood Avenue crossing, the existing 12-inch force mains penetrated a box culvert.

Additionally, a receiving force main discharge doghouse manhole is included on the west side of the 5th Street West and Melson Avenue intersection over the existing 30-inch RCP trunk sewer south of the intersection.

There will be jack-and-bore crossings at Edgewood Avenue, Lane Avenue, West Palm Avenue and at the three CSX RR crossings. In addition, HDD will be used to cross under I-295 at 5th Street West. The remainder of the approximate 17,200-foot pipeline will be installed by open-cut construction.

2.0 **REPORT LIMITATIONS**

This report has been prepared for the exclusive use of Mott McDonald Florida, LLC for specific application to the proposed JEA 5th Street West - Imeson Road to Melson Avenue project as described in this report.

This groundwater evaluation was performed in accordance with generally accepted practices of this profession, undertaken in similar studies at the same time and in the same geographical area. We have endeavored to meet this standard of care, but may be limited by conditions encountered during performance or a client-driven scope of work. Where appropriate, these limitations are discussed in the text of the report, and an evaluation of their significance with respect to our findings has been conducted.

The evaluation and recommendations contained in this report are based on the data obtained from the water samples collected for this project. The scope of our services did not include any environmental assessment or testing for the presence or absence of hazardous or toxic materials in the soil, groundwater, or surface water above/beyond those parameters and chemical analytes examined. The collection of grab water samples, such as those collected at this site, are of limited scope and cannot eliminate the potential that hazardous, toxic, or petroleum substances are present or have been released at the site beyond what is identified by the limited water sampling and chemical analyses. No limited groundwater sampling program can wholly eliminate uncertainty regarding the potential for contamination in connection with a property. Performance of this practice is intended to reduce, but not eliminate, uncertainty regarding the potential for groundwater and surface water impacts. These risks may be further evaluated, but not eliminated, through additional research and/or chemical evaluation and assessment.

If changes in the design or location of the project occur, the conclusions and recommendations contained in this report may need to be modified. We recommend that these changes be provided to us for our consideration. MAE is not responsible for conclusions, interpretations, opinions or recommendations made by others based on the data contained in this report.

3.0 NEARBY CONTAMINATED SOURCES

This investigation included a review of FDEP databases for nearby contaminated sites. The FDEP Contamination Locator Map (CLM) was consulted to evaluate properties near the area of the proposed force main installation. <u>http://prodenv.dep.state.fl.us/DepClnup/welcome.do</u> In addition, the FDEP Institutional Controls Map (ICM) was reviewed to evaluate sites within the FDEP-specified 500-foot search radius. <u>https://ca.dep.state.fl.us/mapdirect/?focus=icr</u>

The results of the requisite FDEP database review of the CLM and ICM, showed two impacted sites within the prescribed 500-foot radius of the proposed dewatering area.

The **Estes Express Lines**, located at 1701 Pickettville Road, is a trucking facility and a listed waste cleanup site in the FDEP databases. MAE reviewed the FDEP Oculus database for files associated with this facility under Facility ID No. 8732017 and COM_69732. Based on the Remedial Action Plan dated March 24, 2009, petroleum and chlorinated solvent contamination was discovered in the area of a diesel AST in 1990. Pump and treat remedial activities were conducted in 1995 and 1996. The impacted area included the area north of West 5th Street approximately 300 feet to 700 feet east of Pickettville Road. Assessment and groundwater monitoring was conducted from 2009 to 2011. The FDEP issued the facility a Site Rehabilitation Completion Order on June 7, 2011. Based on the completion of cleanup at this facility, this previous contamination at this facility should not impact the project construction. A copy of the SRCO is provided in Appendix A.

The Paxon Express, located at 3157 West 5th Street, is a vacant gasoline station and a listed Leaking

Underground Storage Tank (LUST) site in the FDEP databases. MAE reviewed the FDEP Oculus database for files associated with this facility under Facility ID No. 8506940. A petroleum discharge was reported at this facility in February 1990 and the facility is eligible for State funded cleanup with a priority score of 6. Due to its low priority score, a Low Score Site Initiative (LSS) Assessment was conducted and a report was issued on August 2013. The facility formerly had a 6,000-gallon, a 4,000-gallon, and a 2,000-gallon unleaded gasoline USTs installed in 1969 and 1984 and were removed in 2004. The facility currently has one 10,000-gallon gasoline UST installed in 2005. The facility appeared vacant during the recent groundwater sampling event. Based on the LSSI report petroleum contaminated soils were identified at this facility. Impacts appeared to occupy the western portion of the property. No further assessment has been conducted at this facility due to the priority ranking score. The identified petroleum impacts to soil and unknown extent of impacts to groundwater may impact the project construction. Soil and groundwater in the area of this facility will need to be properly managed. A copy of the LSSI Report has been provided in Appendix A.

4.0 TEMPORARY MONITORING WELL INSTALLATION

Two temporary monitoring well was installed at the project site on October 11, 2019. Temporary monitoring well FS-TMW-1 was installed within the grassed west bound right-of-way of West 5th Street northeast of the intersection with Pickettville Road. The location of the temporary monitoring well is provided on Figure 2. Temporary monitoring well FS-TMW-2 was installed within a grassed area in the northbound right-of-way of Melson Avenue northeast of the intersection with West 5th Street.

The monitoring wells were installed by Transamerican Drilling and Testing, Inc. using a direct push rig. Continuous soil samples were collected from the surface to a depth of 15 feet below land surface (bls) to evaluate the groundwater depth and lithology. The well depths were determined based on groundwater level conditions. FS-TMW-1 was set to 13 feet bls and FS-TMW-2 was set to 15 feet. The monitoring wells were constructed of 10-feet of 1-inch diameter pre-packed PVC well screen (0.010-inch slot size), and sufficient riser to reach the ground surface. The sand pre-pack screens consisted of 20-30 Silica with a fine sand seal and cement to surface. The monitoring wells were flush-mounted and finished with an 8-inch manhole and 2 feet x 2 feet concrete pad and a locking cap. Appendix B contains the soil boring logs and well completion data.

5.0 WATER SAMPLING AND ANALYTICAL RESULTS

Groundwater samples were collected from the temporary monitoring wells FS-TMW-1 and FS-TMW-2 on October 30, 2019. During the sampling event, depth to water was measured at 1.88 feet bls and 8.88 feet bls, respectively. MAE established stable purging parameters at the respective sampling locations in general accordance with the FDEP Standard Operating Procedures (FS 2212) before the location was sampled. Appendix C contains the groundwater sampling log.

Following the purging activities, a groundwater sample was collected from the two temporary monitoring wells using poly-tubing connected to a peristaltic pump. The collected sample was placed into laboratory-supplied bottles, stored on wet ice, and submitted to a State of Florida approved analytical laboratory,

Pace Analytical Services in Ormond Beach, Florida. Pace is a NELAP-certified laboratory, Number E83079.

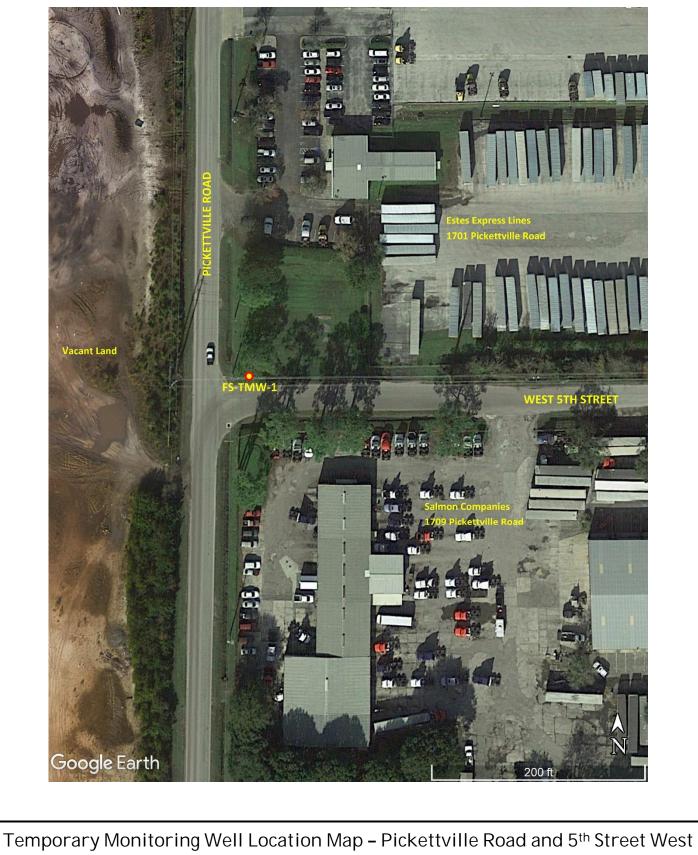
The groundwater sample from FS-TMW-1 was analyzed for the presence of Volatile Organic Compounds (VOCs) by EPA Method 8260, Polynuclear Aromatic Hydrocarbons (PAH) by EPA Method 8270, and the metals Arsenic, Chromium, Cadmium, and Lead by EPA Method 6010. The groundwater sample from FS-TMW-2 was analyzed for the Kerosene Analytical Group. This included Volatile Organic Aromatics and Volatile Organic Halogens (VOA/VOH) by EPA Method 8260, PAH by EPA Method 8270, Total Recoverable Petroleum Hydrocarbons (TRPH) by the FL-PRO Method, Ethylene Dibromide (EDB) by EPA Method 8011, and lead by EPA Method 6010. Field filtered samples were collected for dissolved metal analysis in case turbidity interference was encountered. Copies of the groundwater analytical results are provided in Appendix D.

The results from the laboratory analysis of the groundwater samples indicated the tested analytes did not exhibit concentrations exceeding the Groundwater or Surface Water Cleanup Target Levels defined in Chapter 62-777, Florida Administrative Code. However, concentrations of benzene, toluene, ethylbenzene, MTBE, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthene, Flourene, TRPH, and lead were detected, but were either at or below the Groundwater Cleanup Target Levels.

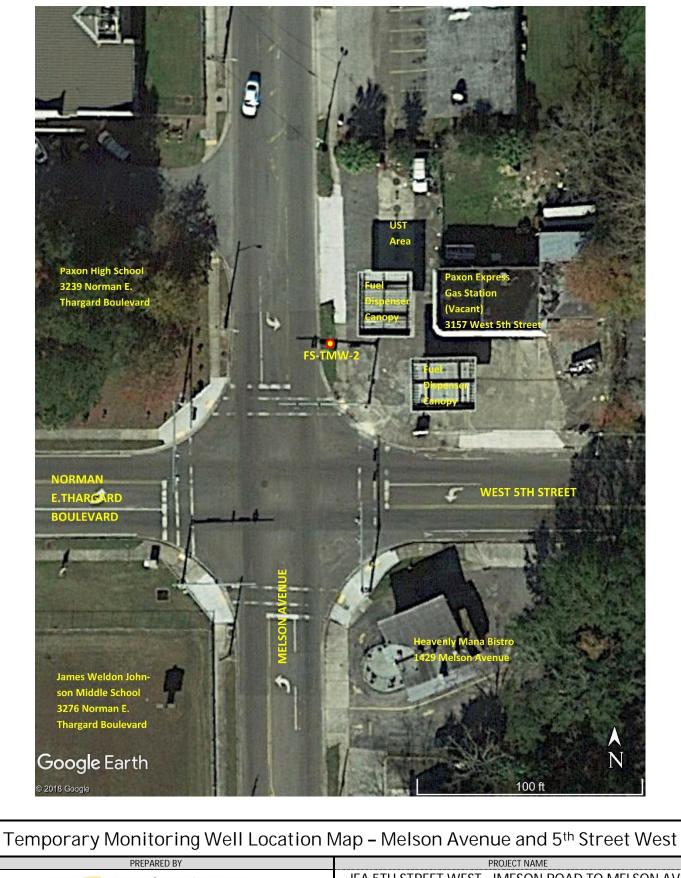
6.0 CONCLUSIONS AND PERMIT REQUEST

The results of laboratory analyses of groundwater samples collected indicate that there are no impacts to groundwater in the area of the installed monitoring wells. However, there is most likely elevated concentrations of petroleum impacts in groundwater at the Paxon Express site and potentially into the roadway right of ways. If dewatering activities in the area of the intersection of Melson Avenue and West 5th Street produces petroleum impacted groundwater that will be discharged to the storm sewer system, this will require the procurement of a Generic Permit for Petroleum Contaminated Site under Chapter 63-621.300(1). Alternatively, the petroleum impacted groundwater can be discharged to the JEA sanitary sewer system under JEA permit. It is our understanding that a 36-inch sanitary sewer trunk line is located in this area and may potentially be used to discharge the produced petroleum impacted groundwater.

Other than this intersection, any groundwater produced along the project alignment can be discharged to the storm sewer system under the Generic Permit. Under Chapter 62-621.300(2) FAC when applying the NOI to use the generic permit, it will be noted that the review of regulatory CLM database information indicated one solvent impacted waste cleanup facility and one LUST facility was identified as contaminated within 500 feet of the proposed dewatering operation. Based on the groundwater sampling and analytical results presented, it appears no contaminants of concern are present in the groundwater at the dewatering site above surface water criteria defined in Chapter 62-302.530 FAC. Therefore, a NOI request for the use of the Generic Permit for the Discharge of Groundwater from Dewatering Operations, February 2015, FAC 62-621.300(2) is applicable for most of the project area. A copy of the Generic Permit application is provided in Appendix E.


If discharge to the JEA sanitary sewer is not feasible for the petroleum impacted area, then procurement of the Generic Permit for Petroleum Contaminated Sites will be required. This may require the treatment of groundwater by air stripper of carbon filtration prior to discharge to the storm sewer system. A copy of the Generic Permit requirements of Petroleum Contaminated Sites is provided include in Appendix E. If the proposed area of dewatering is anticipated for a construction activity exceeding 1 acre in size, then MAE recommends the construction contractor acquire the dewatering permit as part of the Construction General Permit (CGP). The dewatering permit will not add any additional cost to the CGP, provided it is applied for at the time of its CGP application. The development of dewatering Best Management Practices (BMPs) will still be required prior to initiation of the dewatering operation, as per FAC 62-621.300(2).

Following the commencement of dewatering operations, per Chapter 62-621.300(1) or (2) FAC, BMPs, developed by the dewatering contractor, must be adhered to including record-keeping, and collection of effluent samples as required. Please be advised that the FDEP regulations state that the permittee is ultimately responsible for discharges to the waters of the State.


Figures

Project Manager:	BHH	Project No.	0103-0018			SITE LOCATION MAP	FIG NO.
Checked by:	MCV MCV	File Name:	AS SHOWN 0103-0018.BLP		3728 PHILIPS HIGHWAY, SUITE 208, JACKSONVILLE, FL 32207 PH. (904) 519-6990 • FAX (904) 519-6992 • www.MeskelEngineering.com	JEA 5TH STREET WEST - IMESON ROAD TO MELSON AVENUE	1
Approved by:	WJM	Date:	12/11/2019	Meskel & Associates Engineering		JACKSONVILLE, FLORIDA	

PREPARED BY	PROJECT NAME				
	JEA 5TH STREET WEST - IMESON R JACKSONVILLE, FLC				
Meskel & Associates Engineering	REFERERENCE	SCALE			
Meskel & Associates Engineering	Google Earth 2019	As Shown			
PREPARED FOR	MAE PROJECT NO.	FIGURE NO.			
Mott McDonald Florida, LLC	0103-0018	2			

	JEA 5TH STREET WEST - IMESON R JACKSONVILLE, FLC	
	REFERERENCE	SCALE
Meskel & Associates Engineering	Google Earth 2019	As Shown
PREPARED FOR	MAE PROJECT NO.	FIGURE NO.
Mott McDonald Florida, LLC	0103-0018	3

Tables

Table 1 Groundwater Analytical Summary JEA 5th Street West – Imeson Road to Melson Avenue New Force Main Project Jacksonville, Duval County, Florida MAE Project No. 0103-0018							
Well No.	FS-TMW-1	FS-TMW-2	Groundwater	Freshwater Surface Water			
Sample Date	10/29/2019	10/29/2019	Cleanup Target	Criteria, Chapter			
Location	Northeast of Pickettville Road and West 5th Street	Northeast of Melson Avenue and West 5th Street	Levels, Chapter 62-777, F.A.C. (µg/L)	62-777, F.A.C. and Chapter 62- 302.530, F.A.C. (μg/L)			
Parameter, Method							
(All Units in micrograms per liter - mg/L)							
Benzene, EPA Method 8260	0.10 U	1.2	1	1.18			
Toluene, EPA Method 8260	0.50 U	0.56 I	40	480			
Ethylbenzene, EPA Method 8260	0.50 U	1.6	30	610			
Total Xylenes, EPA Method 8260	1.0 U	1.0 U	20	370			
MTBE, EPA Method 8260	0.50 U	1.4 I	20	200			
Dichloroethene, EPA Method 8260	0.48 I	NA	63	35			
Carbon Disulfide, EPA Method 8260	1.2	NA	700	7000			
All Other Volatile Organic Compounds (VOCs) analyzed by EPA Method 8260	BDL	BDL	Various	Various			
Naphthalene, EPA Method 8270	0.29 U	2.5	14	26			
1-Methylnaphthalene, EPA Method 8270	0.19 U	12.8	28	95			
2-Methylnaphthalene, EPA Method 8270	0.68 U	8.4	28	30			
Acenaphthene, EPA Method 8270	0.040 U	0.15 l	20	200			
Fluorene, EPA Method 8270	0.088 U	0.15 l	280	2800			
All other Polycyclic Aromatic Hydrocarbons (PAHS) analyzed by EPA Method 8270	BDL	BDL	Various	Various			
Total Recoverable Petroleum Hydrocarbons analyzed by the FL-PRO Method	NA	780 I	5,000	5,000			
1,2-Dibromoethane (EDB) by EPA Method 8011	0.31 U	0.0078 U	0.02	13			
Lead by EPA Method 6010	4.6 U	8.41 I	15	8.5			

Notes:

Water Criteria per Table II of Chapter 62-777, FAC and Chapter 62-302.530, FAC

U or BDL - Below Laboratory Method Detection Limits

I - Concentration detected between Method Detection Limit and Practical Quantization Limit

¹Florida Department of Environmental Protection Groundwater Cleanup Target Levels (GCTLs) and Freshwater Surface

Appendix A

June 7, 2011

Florida Department of Environmental Protection

Northeast District 7825 Baymeadows Way, Suite 200B Jacksonville, Florida 32256 Rick Scott Governor

Jennifer Carroll Lt. Governor

Herschel T. Vinyard Jr. Secretary

CERTIFIED MAIL #91 7108 2133 3936 4226 1797 RETURN RECEIPT REQUESTED

Mr. Richard L. Healy, Vice President McKenzie Tank Lines Post Office Box 1200 Tallahassee, Florida 32302

Re: <u>Site Rehabilitation Completion Order (SRCO)</u> Former McKenzie Tank Lines Terminal 1701 Pickettville Road, Jacksonville, Florida Duval County – Waste Cleanup Site #: COM_69732, Project #: 74389

IN- ML CMT PI OUT-DEFET ANT PI

C //

Dear Mr. Healy:

The Northeast District has reviewed the Remedial Action Status Update Report dated November 10, 2009, Post Active Remediation Summary Reports received March 8, 2010, and June 25, 2010, and the Fourth Quarter Post Active Remediation Summary Report with No Further Action Proposal, dated October 28, 2010, that was prepared by Geovac Environmental Services, Inc., for the Former McKenzie Tank Lines Terminal located at 1701 Pickettville Road, Jacksonville, Florida. Maps showing the location of the Former McKenzie Tank Lines Terminal and the former location of the "contaminated site" (i.e., contaminant plume) for which this Order is being issued are attached as Exhibits 1 and 2 and are incorporated by reference herein.

The contamination, which resulted from a discharge that was discovered by the Petroleum Section and referred to the Waste Cleanup Section on October 25, 1993, consisted of chlorinated solvents and their degradation compounds (tetrachloroethene, trichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane and methylene chloride). The discharge appears to be a result of rinsate of solvents disposed of in a slop tank pit from semi-trailer storage tanks after transportation was completed. The NFA Proposal is supported by earlier submittals, prepared pursuant to the requirements of Chapter 62-780, Florida Administrative Code (F.A.C.), including, but not limited to: Mr. Richard L. Healy Former McKenzie Tank Lines Terminal June 7, 2011 Page two

Site Assessment Report (SAR), dated 6-14-1991, and addenda dated 8-31-1992;
Supplemental Assessment Report Addendums, dated 9-25-2008 & 11-26-2008;
Remedial Action Plan (RAP), dated 3-10-2009 and Addendum dated 3-25-2009;
Remedial Action Status Update Report, dated November 10, 2009;
Post Active Remediation Summary Reports received March 8, 2010 and June 25, 2010;
Fourth Quarter Post Active Remediation Summary Report with No Further Action Proposal, dated October 28, 2010.

Based on the documentation submitted with the NFA Proposal and the abovereferenced documents, the Department of Environmental Protection (Department) has reasonable assurance that McKenzie Tank Lines has met the criteria in Chapter 62-780, F.A.C. The submittals indicate that soil, groundwater, and surface water contaminant concentrations are below the applicable Soil Cleanup Target Levels, Groundwater Cleanup Target Levels, and Surface Water Taget Levels as adopted in Chapter 62-777, F.A.C. (Effective date April 17, 2005.) Therefore, you have satisfied the site rehabilitation requirements for the above-referenced contaminated site and are released from any further obligation to conduct site rehabilitation at the contaminated site, except as set forth below. See attached table (Exhibit 3), incorporated by reference herein, which includes information regarding the contaminants, affected media, and applicable cleanup target levels for the contaminated site that is the subject of this Order-

Failure to meet the following requirements will result in the revocation of this Order:

(a) You are required to properly abandon all monitoring wells within 60 days of receipt of this Order. The monitoring wells must be plugged and abandoned in accordance with the requirements of Section 62-532.500(4), F.A.C.

Further, in accordance with Section 376.30701(4), Florida Statutes (F.S.), upon completion of site rehabilitation, additional site rehabilitation is not required unless it is demonstrated that:

- (a) Fraud was committed in demonstrating site conditions or completion of site rehabilitation;
- (b) New information confirms the existence of an area of previously unknown contamination which exceeds the site-specific rehabilitation levels established in

Mr. Richard L. Healy Former McKenzie Tank Lines Terminal June 7, 2011 Page three

accordance with Section 376.30701(2), F.S., or which otherwise poses the threat of real and substantial harm to public health, safety, or the environment;

(c) A new discharge of pollutants or hazardous substances occurs at the site subsequent to the issuance of this Order.

Legal Issues

The Department's Order shall become final unless a timely petition for an administrative hearing is filed under Sections 120.569 and 120.57, F.S., within **21** days of receipt of this Order. The procedures for petitioning for a hearing are set forth below.

Persons affected by this Order have the following options:

- A. If you choose to accept the Department's decision regarding this SRCO, you do not have to do anything. This Order is final and effective on the date filed with the Clerk of the Department, which is indicated on the last page of this Order.
- B. If you choose to challenge the decision, you may do the following:
 - 1. File a request for an extension of time to file a petition for hearing with the Department's Agency Clerk in the Office of General Counsel within **21** days of receipt of this Order. Such a request should be made if you wish to meet with the Department in an attempt to informally resolve any disputes without first filing a petition for hearing; or
 - 2. File a petition for administrative hearing with the Department's Agency Clerk in the Office of General Counsel within **21** days of receipt of this Order.

Please be advised that mediation of this decision pursuant to Section 120.573, F.S., is not available.

How to Request an Extension of Time to File a Petition for Hearing

For good cause shown, pursuant to Section 62-110.106(4), F.A.C., the Department may grant a request for an extension of time to file a petition for hearing. Such a request must be filed (received) by the Agency Clerk in the Office of General Counsel of the Department at 3900 Commonwealth Boulevard, Mail Station 35, Tallahassee, Florida, 32399-3000, within **21** days of receipt of this Order. Petitioner, if different from the

Mr. Richard L. Healy Former McKenzie Tank Lines Terminal June 7, 2011 Page four

McKenzie Tank Lines, shall mail a copy of the request to the McKenzie Tank Lines at the time of filing. Timely filing a request for an extension of time tolls the time period within which a petition for administrative hearing must be made.

How to File a Petition for Administrative Hearing

A person whose substantial interests are affected by this Order may petition for an administrative hearing under Sections 120.569 and 120.57, F.S. The petition must contain the information set forth below and must be filed (received) by the Agency Clerk in the Office of General Counsel of the Department at 3900 Commonwealth Boulevard, MS 35, Tallahassee, Florida, 32399-3000, within **21** days of receipt of this Order. Petitioner, if different from the McKenzie Tank Lines, shall mail a copy of the petition to the McKenzie Tank Lines at the time of filing. Failure to file a petition within this time period shall waive the right of anyone who may request an administrative hearing under sections 120.569 and 120.57, F.S.

Pursuant to Section 120.569(2), F.S., and Rule 28-106.201, F.A.C., a petition for administrative hearing shall contain the following information:

- a) The name, address, and telephone number of each petitioner; the name, address, and telephone number of the petitioner's representative, if any; the site owner's name and address, if different from the petitioner; the Department facility number; and the name and address of the facility;
- b) A statement of when and how each petitioner received notice of the Department's action or proposed action;
- c) An explanation of how each petitioner's substantial interests are or will be affected by the Department's action or proposed action;
- d) A statement of the disputed issues of material fact, or a statement that there are no disputed facts;
- e) A statement of the ultimate facts alleged, including a statement of the specific facts the petitioner contends warrant reversal or modification of the Department's action or proposed action;
- f) A statement of the specific rules or statutes the petitioner contends require reversal or modification of the Department's action or proposed action; and
- g) A statement of the relief sought by the petitioner, stating precisely the action petitioner wishes the Department to take with respect to the Department's action or proposed action.

This Order is final and effective on the date filed with the Clerk of the Department, which is indicated on the last page of this Order. Timely filing a petition for

Mr. Richard L. Healy Former McKenzie Tank Lines Terminal June 7, 2011 Page five

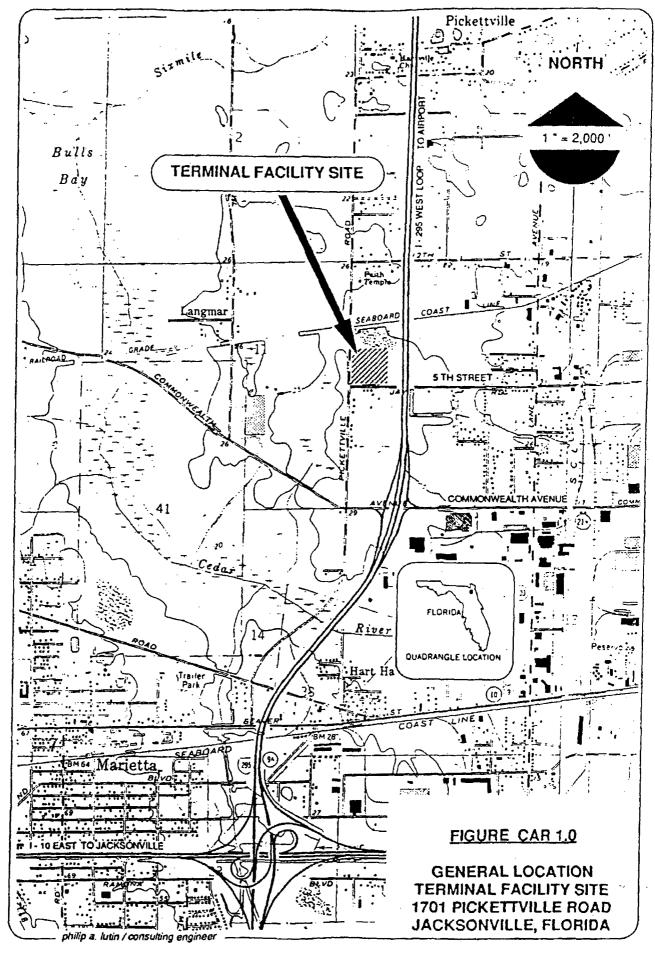
administrative hearing postpones the date this Order takes effect until the Department issues either a final order pursuant to an administrative hearing or an Order Responding to Supplemental Information provided to the Department pursuant to meetings with the Department.

Judicial Review

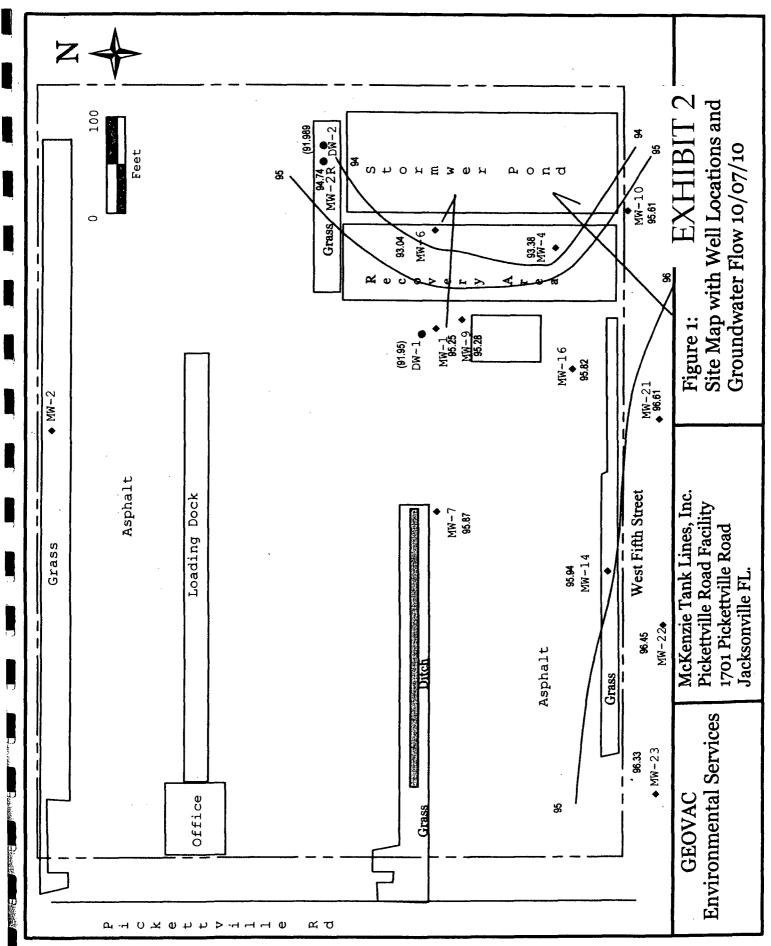
Any party to this Order has the right to seek judicial review of it under Section 120.68, F.S., by filing a notice of appeal under Rule 9.110 of the Florida Rules of Appellate Procedure with the Agency Clerk of the Department in the Office of General Counsel, Mail Station 35, 3900 Commonwealth Boulevard, Tallahassee, Florida 32399-3000, and by filing a copy of the notice of appeal accompanied by the applicable filing fees with the appropriate district court of appeal. The notice of appeal must be filed within thirty days after this order is filed with the clerk of the Department (see below).

Questions

Any questions regarding the Department's review of your NFA Proposal should be directed to John D. Phillips at 7825 Baymeadows Way, Suite B200, Jacksonivlle, Florida 32256, via phone at 904.256.1549, or email john.d.phillips@dep.state.fl.us. Questions regarding legal issues should be referred to the Department's Office of General Counsel at 850.245.2242. Contact with any of the above does not constitute a petition for administrative hearing or request for an extension of time to file a petition for administrative hearing.


Sincerely,

Gregory J. Strong District Director


Enclosures (Exhibits 1, 2, and 3)

cc: John M. Elrod, P.G., Geovac Environmental Services, Inc. (geovac@mckenzietank.com)

FILED, on this date, pursuant to Section 120.52, F.S., with the designated Department Clerk, receipt of which is hereby acknowledged. Beverly

EXHIBIT 1

にある

McKenzie Tank Lines, 1701 Pickettville Rd. Jacksonville, FL

Table 1: Surface Water Analytical Results, North and South Trenches, data in µg/L

Ex-N / Trench -North	TCL	4/10/2009	5/1/09	5/15/09	6/10/2009	7/22/2009	10/7/2009	10/21/2009
1,1,1-Trichloroethane	200	410	280	89	7.2	2.9 1	<0.4	<0.4
1,1-Dichloroethane	70	<45	21	14 1	2	6.6	2.2	<0.45
1,1-Dichloroethene	7	<50	8.71	<12	0.721	` <1.6	<0.5	<0.5
cis 1,2-Dichloroethene	700	4300	1900	2800	280	380	58	3.5
trans 1,2-Dichloroethene	100	<47	15	<12	3.2	3.6 1	0.71	<0.47
Tetrachloroethene	3	4800	2000	580	8	2.3 1	<0.43	<0.43
Trichloroethene	3	930	1900	520	3.2	<2.8	1.3	<0.39
Vinyl Chloride	1	360	13	49	36	290	66	<0.48
Methylene Chloride		1				3.4 IV		<0.41

Sump		4/10/2009	5/1/09	5/15/09	6/10/09	7/22/2009
1,1,1-Trichloroethane	200	2.7	- 4	<0.4	<0.35	<0.35
1,1-Dichloroethene	7	1.3	<5	1.3	0.46	<0.32
cis 1,2-Dichtoroethene	700	170	76	200	24	5.5
trans 1,2-Dichloroethene	100	1.4	<4.7	1.3	<0.46	<0.46
Tetrachloroethene	3	4600	590	440	8.6	1.6
Trichloroethene	3	190	62	85	3.2	<0.56
Vinyl Chloride	1	26	<4.8	26	8.7	2.5

Ex-S southern excavation	4/10/2009	5/1/09	5/15/09	6/10/09		
1,1,1-Trichloroethane 200		<0.4	<4	<0.4	<0.35	
cis 1,2-Dichloroethene	700	16	<4.1	1.9	1.1	
Tetrachloroethene	3	24	<4.3	<0.43	1.4	
Trichloroethene	3	1.1	<3.9	<0.39	<0.56	
Vinyl Chloride	1	<0.48	<4.8	0.62 1	<0.58	

6/10/2009: trench south and excavation south were joined. One sample taken

Table 2: Soil Analytical Results, data in mg/Kg

Pile S	Dir. Ex	Leach	04/11/09	05/01/09	5/15/09	6/10/09
1,1,1-Trichloroethane	730	1.9	<0.038	< 0.0003	< 0.0005	< 0.0004
1.1-Dichloroethene	95	0.06	<0.063	<0.0005	<0.0009	<0.0007
cis 1,2-Dichloroethene	33	0.4	<0.037	<0.0003	< 0.0003	0.0013
Tetrachloroethene	8.8	0.03	0.67	0.034	0.02	0.0035
Trichloroethene	6.4	0.03	<0.041	<0.0004	< 0.0006	0.0014
Vinyl Chloride	0.2	0.007	<0.030	< 0.0003	< 0.0007	<0.0006

	mg/Kg						
Pile N	Dir. Ex	Leach	04/11/09	05/01/09	5/15/09	6/10/09	10/7/09
1,1,1-Trichloroethane	730	1.9	<0.032	<0.0003	<0.041	0.0004J	<0.0003
1.1-Dichloroethene	95	0.06	<0.053	<0.0005	<0.076	<0.0005	< 0.0004
cis 1,2-Dichloroethene	33	0.4	0.18	0.019	0.44	0.035	0.0024
Tetrachloroethene	8.8	0.03	3.2	0.054	0.8	0.066	0.12
Trichloroethene	6.4	0.03	0.0741	0.0034	0.1	0.0041	0.0063
Vinyl Chloride	0.2	0.007	<0.025	<0.0002	<0.064	<0.0005	< 0.0002

EXHIBIT 3

GEOVAC ENVIRONMENTAL SERVICES. INC.

McKenzie Tank Lines, 1701 Pickettville Rd. Jacksonville, FL

S-Ex-N	Dir. Ex	Leach	04/11/09	06/10/09
cis 1,2-Dichloroethene	33	0.4	< 0.03	0.0087
Tetrachioroethene	8.8	0.03	0.35	0.25
Trichloroethene	6.4	0.03	<0.034	0.022
Vinyl Chloride	0.2	0.007	<0.024	< 0.0006
trans-1,2-Dichloroethene	53	0.7	<0.027	0.0007 J
S-Ex-W	Dir. Ex	Leach	04/11/09	06/10/09
cis 1,2-Dichloroethene	33	0.4	<0.0004	< 0.0003
Tetrachloroethene	8.8	0.03	0.002	0.0014 J
Trichloroethene	6.4	0.03	<0.0004	< 0.0004
Vinyl Chloride	0.2	0.007	< 0.0003	< 0.0005
trans-1,2-Dichloroethene	53	0.7	<0.0003	< 0.0003
Soils	mg/Kg			
S-Ex-E	Dir. Ex	Leach	04/11/09	06/10/09

S-EX-E	UIT. EX	Leach	04/11/09	06/10/09
cis 1,2-Dichloroethene	33	0.4	< 0.0004	<0.0002
Tetrachloroethene	8.8	0.03	0.035	<0.0009
Trichloroethene	6.4	0.03	< 0.0004	<0.0005
Vinyl Chloride	0.2	0.007	< 0.0003	<0.0006
trans-1,2-Dichloroethene	53	0.7	< 0.0003	<0.0004
Soils	mg/Kg			
S-Ex-S	Dir. Ex	Leach	04/11/09	06/10/09
cis 1,2-Dichloroethene	33	0.4	0.0009 J	0.0005 J
Tetrachloroethene	8.8	0.03	0.0008 J	0.0032
Trichloroethene	6.4	0.03	<0.0004	< 0.0005
Vinyl Chloride	0.2	0.007	<0.0002	<0.0005
trans-1,2-Dichloroethene	53	0.7	< 0.0003	<0.0003

Groundwater samples were collected from monitoring wells MW-1, MW-2R, MW-4R, MW-6R, and MW-10 on October 7 and 9, 2009 for analysis of EPA Method 8260 Halocarbons. A summary of the results is included in the following table.

	Tetrachioro ethane	Trichloro ethene	cis-1,2- Dichloro ethene	trans-1,2- Dichloro ethene	Vinyi Chloride	1,1-Dichloro ethane	Methylene Chloride**
TCL*	3 P	3 P	70 p	100 p	1P	700 G	5.0 P
MW-1	<0.43	<0.39	<0.41	⊲0.47	<0.48	<0.45	<0.41
MW-2R	<0.43	<0.39	⊲0.41	⊲0.47	<0.48	⊲0.45	<0.41
MW-4R	⊲0.43	<0.39	⊲0.41	<0.47	<0.48	<0.45	<0.41
MW-6R	2 2	<2.0	<2.0	<2.4	<2.4	4 2	<2.0
MW-10	<0.43	<0.39	<0.41	<0.47	<0.48	⊲0.45	<0.41

Table 3: Groundwater Analytical Results, Data in ug/L, October, 2009

* TCL = Target Cleanup Levels: Drinking Water Standards P= Primary, G = Guidance

**Methylene Chloride is flagged as a common laboratory contaminant

The groundwater analytical results for the monitoring wells are all below laboratory reporting limits. The surface water sample from the north trench was acceptable except for vinyl chloride in the next to last sample. The surface water was resampled on

GEOVAC ENVIRONMENTAL SERVICES. INC.

Table 1: Summary of Groundwater Analytical Data, Pickettville Road All data in $\mu g/L$

	Tetrachloro	Trichloro	c-1,2-Dichloro	t-1,2-Dichloro	Vinyl	1,1-Dichloro	Methylene
MW-1	ethene	ethene	ethene	ethene	Chloride	ethane	Chloride
TCL*	3 P	3 P	70 P	100 P	1 P	700 G	5 P
Oct-09	<0.43	<0.39	<0.41	<0.47	<0.48	<0.45	<0.41
Feb-10	<0.43	<0.39	<0.41	<0.47	<0.48	<0.45	<0.41
Jun-10	<0.099	<0.13	0.43 I	<0.11	0.43 I	< 0.05	<0.07
Oct-10	<0.42	<0.48	<0.44	<0.60	<0.66	<0.60	<1.2
	Tetrachloro	Trichloro	c-1,2-Dichloro	t-1,2-Dichloro	Vinyl	1,1-Dichloro	Methylene
MW2R	ethene	ethene	ethene	ethene	Chloride	ethane	Chloride
TCL	3 P	3 P	_70 P	100 P	1 P	700 G	5 P
Oct-09	<0.43	<0.39	<0.41	<0.47	<0.48	<0.45	<0.41
Feb-10	<0.43	<0.39	<0.41	<0.47	<0.48	<0.45	<0.41
Jun-10	<0.099	<0.13	<0.075	<0.11	<0.083	<0.05	<0.07
Oct-10	<0.42	<0.48	<0.44	<0.60	<0.66	<0.60	<1.2
l	Tetrachloro	Trichloro	c-1,2-Dichloro	t-1,2-Dichloro	Vinyl	1,1-Dichloro	Methylene
MW-4R	ethene	ethene	ethene	ethene	Chloride	ethane	Chloride
TCL	3 P	3 P	70 P	100 P	1 P	700 G	5 P
Oct-09	<0.43	<0.39	<0.41	<0.47	<0.48	<0.45	<0.41
Feb-10	<0.43	<0.39	<0.41	<0.47	<0.48	<0.45	<0.41
Jun-10	<0.099	<0.13	<0.075	<0.11	<0.083	<0.05	<0.07
Oct-10	<0.42	<0.48	<0.44	<0.60	<0.66	<0.60	<1.2
	Tetrachloro	Trichloro	c-1,2-Dichloro	t-1,2-Dichloro	Vinyl	1,1-Dichloro	Methylene
MW-6R	ethene	ethene	ethene	ethene	Chloride	ethane	Chloride
TCL	3 P	3 P	70 P	100 P	1 P	700 G	5 P
Oct-09	<2.2	<2	<2	<2.4	<2.4	<2.2	<2
Feb-10	<0.43	0.46 I**	1.1	<0.47	<0.48	1.9	<0.41
Jun-10	<20	<26	<15	<22	<17	<10	<14
Aug-10	<0.21	<0.24	<0.22	<0.3	0.71 I	<0.3	<0.62
Oct-10	<0.42	<0.48	<0.44	<0.60	<0.66	<0.60	<1.2
			· .	•			,
	Tetrophlana	Thiskland	a to Dishlars	A + + Disti	3 Zanal	a a Dishlama	Mathalass

	Tetrachloro	Trichloro	c-1,2-Dichloro	t-1,2-Dichloro	Vinyl	1,1-Dichloro	Methylene
MW-10	ethene	ethene	ethene	ethene	Chloride	ethane	Chloride
TCL	3 P	3 P	70 P	100 P	1 P	700 G	5 P
Oct-09	<0.43	<0.39	<0.41	<0.47	<0.48	<0.45	<0.41
Feb-10	<0.43	<0.39	<0.41	<0.47	<0.48	<0.45	<0.41
Jun-10	<0.099	<0.13	<0.075	<0.11	<0.083	<0.05	<0.07
Oct-10	<0.42	<0.48	<0.44	<0.60	<0.66	<0.60	<1.2

* TCL = Target Cleanup Levels: Drinking Water Standards:

P = Primary, S = Secondary, G = Guidance concentration

** I-Flag indicates that the result is between the laboratory detection limit and reporting limit.

Former McKenzie Tank Lines Pickettville Road Terminal

Two surface water samples were collected from the adjacent stormwater retention pond on August 28, 2008. The locations are east of monitoring well MW-6 and east of monitoring well MW-4. The samples were analyzed for the same parameters, as the monitoring wells. The analytical results are summarized below and the data package included as an attachment. Sample locations are shown in Figure 2

		1,1-	1,1-	C-1,2-	t-1,2-			
	Methylene	Dichloro	Dichloro	Dichloro	Dichloro	Vinyl	Tetrachloro	Trichloro
	Chloride	ethene	ethane	ethene	ethene	Chloride	ethene	ethene
Pond N 6	<0.65	<0.36	<0.45	<0.45	<0.41	<0.52	<0.35	<0.26
Pond N 4	<0.65	<0.36	<0.45	<0.45	<0.41	<0.52	<0.35	<0.26

Surface Water Analytical Results, in µg/L

5. The former slop tank is located just south of MW-6. Soil samples should be collected around the vicinity of the slop tank and MW-6 to determine if the clay layer is leaching VOHs into the surface water.

Two soil samples, MW-6 Soil, and MW6+20 Soil, were collected on August 29, 2008 and submitted to the laboratory for analysis of the same constituents as the surface and ground waters. The samples were collected at a depth of 2 feet below ground surface and just above the groundwater table. MW-6 Soil was collected approximately feet west of MW-6 and MW6+20 was collected 20 feet south of MW-6, toward the main sump. The results are summarized below and the data package included as an attachment. Sample locations are shown in Figure 2.

Soil Sample Analytical Results, data in mg/Kg

		Methylene Chloride	1,1- Dichloro ethene	1,1- Dichloro ethane	c-1,2- Dichloro ethene	t-1,2- Dichloro ethene	Vinyl Chloride	Tetrachloro ethene	Trichloro ethene
ſ	'MW6 Soil	<0.0003	<0.0005	<0.0002	<0.0003	<0.0004	<0.0002	0.0048	<0.0006
	MW6+20 Soil	<0.0003	<0.0005	<0.0002	<0.0003	<0.0004	<0.0002	0.014	0.0041

As documented, only very low concentrations of Tetrachloroethene and Trichloroethene are present in the soils. The results are well below the soil cleanup target levels (62-777, Table 2 F.A.C.) of 8.8 mg/Kg and 6.4 mg/Kg, respectively.

6. Since the conception of the remediation system a total of 2,511,533 million gallons of contaminated water has been recovered and treated, but contamination remains above GCTLs and contaminant concentrations in some wells is increasing. The remediation system appears to have proven ineffective and should be used in conjunction with other remedial options. Please provide an evaluation and proposed modifications to the remedial action plan.

P.G. CERTIFICATION

Information presented in the Remedial Action Status Update Report dated November 10, 2009, Post Active Remediation Summary Reports received March 8, 2010, and June 25, 2010, and the Fourth Quarter Post Active Remediation Summary Report with No Further Action Proposal, dated October 28, 2010, that was prepared by Geovac Environmental Services, Inc., for the Former McKenzie Tank Lines Terminal located at 1701 Pickettville Road, Jacksonville, Florida provides reasonable assurance that trichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane and methylene chloride) are no longer present in the area related to discharge of rinsate water and solvents disposed of in a slop tank pit. In this area for the above contaminants the reports indicate that concentrations above soil or groundwater cleanup target levels are no longer present and this area has met the criteria in Chapter 62-780, Florida Administrative Code (FAC).

Therefore, I recommend the issuance of the accompanying Site Rehabilitation Completion Order.

This review was performed consistent with the degree of care and skill ordinarily exercised under similar circumstances by registered professionals practicing in the field of geology at the time of review. No other representation, expressed or implied, is made.

___ I personally completed this review.

X_This review was conducted by John D. Phillips working under my direct supervision.

NO. 1528 Å Richard S. Rachal, P.G. Professional Geologist #1528 Florida Department of Environme Date

August 23, 2013

Ms. Kristy Trueblood Florida Department of Environmental Protection Bureau of Petroleum Storage Systems, Team 5 2600 Blair Stone Road, MS 4585 Tallahassee, FL 32399-2400

RE: LSSI General Report Paxon Express 3157 W 5th St. Jacksonville, Duval County, Florida FDEP Facility ID No.: 16/8506940 Work Order No: 2013-95-W5410A Site Priority Ranking Score: 6 HCR Project #: 128094

Dear Ms. Trueblood:

Please find enclosed one original Low Scored Site Initiative Report for the activities conducted at the above referenced site as authorized by the Pre-Approval Program Work Order No. 2013-95-W5410A. Copies of the work order and verbal change order (VCO) are included in **Appendix A**. A site plan is included as **Figure 1**.

Handex Consulting & Remediation-Southeast, LLC, (HCR) appreciates the opportunity to provide these services to the Florida Department of Environmental Protection, Petroleum Cleanup Section 5, Bureau of Petroleum Storage Systems. Should you have any questions or comments concerning this report, please contact the undersigned at your convenience at (850) 878-0813, extension 1423.

Sincerely, HANDEX CONSULTING, AND REMEDIATION-SOUTHEAST, LLC

Matthew Hendrix

Matthew Hendrix Staff Engineer mhendrix@handexmail.com

Gamithe Fillom

Samantha Fillmore, P.G. LSSI and SCS Program Manager Florida License No.: 2498

8/23/13

cc: Mr. Robert A. Miller, Seminole Boosters, Inc. P.O. Box 1353, Tallahassee, FL 32302

LSSI General Report

Paxon Express 3157 W 5th St. Jacksonville, Duval County, Florida FDEP Facility ID#: 16/8506940 Work Order Number 2013-95-W5410A Site Score: 6

Prepared for: **Florida Department of Environmental Protection** Twin Towers Office Building Petroleum Cleanup Section 5 2600 Blair Stone Road, MS 4585 Tallahassee, Florida 32399-2400

Prepared by: Handex Consulting and Remediation-Southeast, LLC 3031 Eliza Road, Suite 2 Tallahassee, Florida 32308

August 2013

Ms. Kristy Trueblood Paxon Express (16/8506940) Page 1

SITE HISTORY

The site is located at 3157 West 5th Street, Jacksonville, Florida. The property is owned John and Sandy Lao, and operates as a gas station. The site contained one 6,000 gallon unleaded gasoline underground storage tank (UST), one 2,000 gallon unleaded gasoline UST, and one 4,000 gallon unleaded gasoline UST. A discharge reporting form was submitted in February 1990 in response to contamination discovered during manual testing of the compliance wells. In July 2004, all three tanks were removed. The removed tanks were replaced by one 22,000 gallon unleaded gasoline UST which was set in place in August 2004 and completely installed in January 2005. To date, no further work has been completed.

64

HCR has discussed the LSSI program with the property owner, Mr. John Lao. At this time, Mr. Lao wishes to receive an SRCO only for his property.

SOIL SCREENING

On June 5, 2013 HCR personnel mobilized to the referenced site to conduct soil boring/screening and soil sampling in accordance with the approved LSSI work order. Prior to advancing soil borings, ground penetrating radar (GPR) services were performed by GroundHound of Jacksonville, Florida. GPR was performed due to the high possibility of encountering underground product and electrical lines. A total of thirteen (13) borings were installed on the property in all potential source areas. Groundwater was encountered at approximately 8 feet below land surface. Standard operating procedures for the field screening and soil sampling were in accordance with Chapter 62-770, Florida Administrative Code (FAC).

All collected soil samples were field screened for petroleum hydrocarbon vapors using a calibrated Organic Vapor Analyzer (OVA) equipped with a Flame Ionization Detector (FID). Each collected soil sample was divided and placed in two (2) 16-ounce glass mason jars, then covered with aluminum foil. The soil headspace was subsequently measured with the OVA. One reading was obtained with an activated charcoal filter and one reading was obtained without a filter. The total corrected hydrocarbon measurement was determined by subtracting the filtered

Ms. Kristy Trueblood Paxon Express (16/8506940) Page 2

reading from the unfiltered reading. During the soil screening activities, personnel detected elevated levels (over 10 ppm) of OVA FID responses in the soil samples collected from all thirteen borings at varying depths. Figure 2 illustrates soil screening locations and net OVA readings. OVA results are also summarized in Table 1. Copies of the boring logs with lithologic descriptions are included as Appendix B.

SOIL SAMPLING

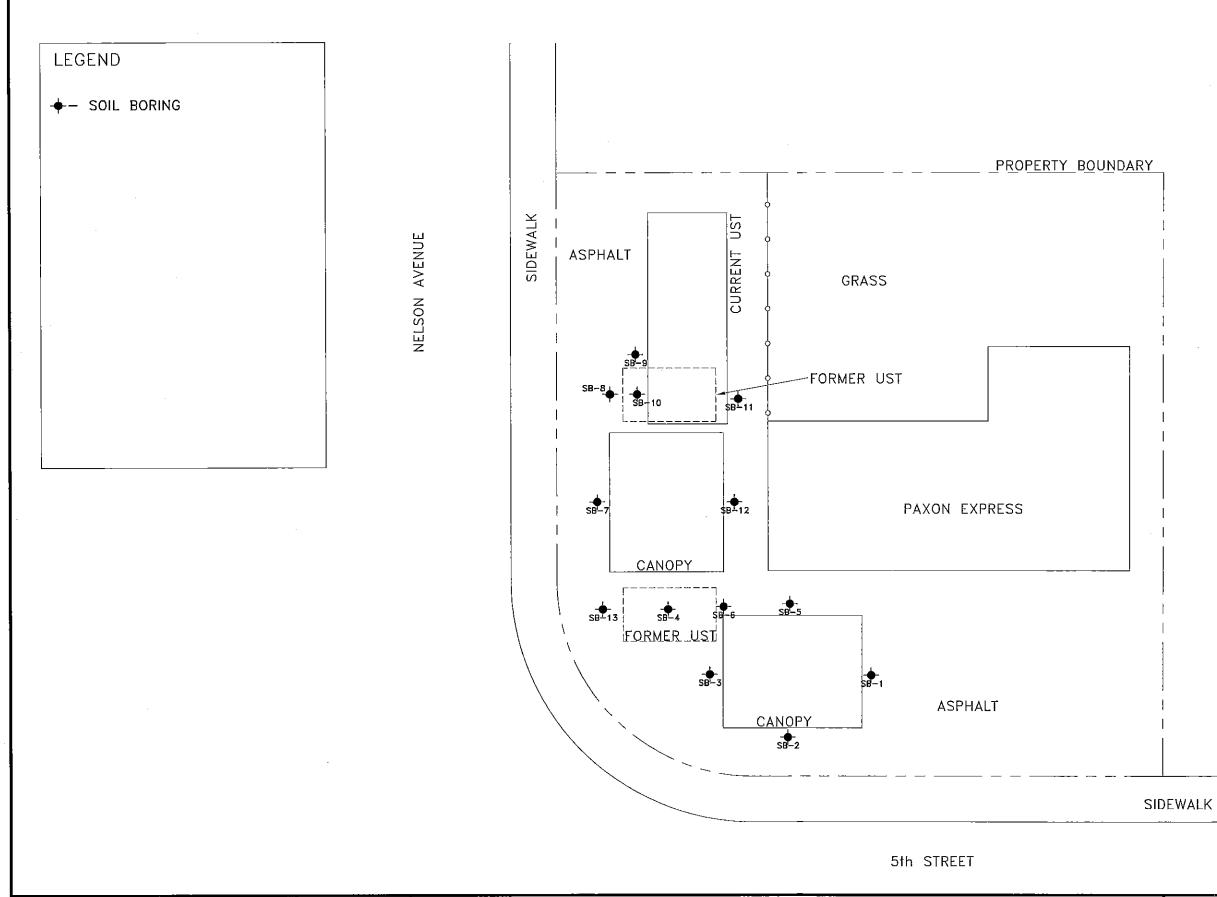
While on site, HCR contacted the FDEP site manager to discuss results of the OVA screening. It was agreed that soil samples would be collected from soil borings SB-3 at 4', SB-4 at 4', SB-7 at 2', SB-9 at 2', and SB-13 at 2'. The FDEP site manager requested HCR halt all additional field assessment activities due to the high OVA responses and strong petroleum vapors. Representative samples were sent to the approved laboratory for analysis for the presence of petroleum compounds. Soil samples chosen for laboratory analyses were placed in laboratory provided sample containers, labeled, packed on ice and delivered under chain of custody to TestAmerica of Tallahassee, FL. Soil Samples were then analyzed by Environmental Protection Agency (EPA) Method 8260 for benzene, toluene, ethylbenzene, total xylenes (BTEX) and methyl tert butyl ether (MTBE), by EPA Method 8270 for polynuclear aromatic hydrocarbons (PAHs), and by the Florida Petroleum Residual Organics (FL-PRO) Method for total recoverable petroleum hydrocarbons (TRPH). Additionally, soil aliquot was collected for contingent TRPH Fractionation analysis via TPHCWG and the Synthetic Precipitation Leaching Procedure (SPLP).

SOIL ANALYTICAL RESULTS

According to laboratory data, the sample collected from SB-9 did not yield concentrations above Table II Soil Cleanup Target Levels (SCTLs) as defined in Chapter 62-777 of the Florida Administrative Code (FAC).

Laboratory results indicate the sample collected from SB-3 contained concentrations of benzene, toluene, ethylbenzene, total xylenes, and MTBE over leachability SCTLs. SB-4 contained concentrations of ethylbenzene and total xylenes above SCTLs. SB-7 contained concentrations

of benzene, toluene, and ethylbenzene above SCTLs. SB-13 contained concentrations of benzene, toluene, ethylbenzene, total xylenes, naphthalene,1 -methylnaphthalene, and 2-methylnaphthalene above SCTLs.


Laboratory results also indicate the samples collected from SB-4, SB-7, and SB-13 produced concentrations over residential direct exposure SCTLs per Chapter 62-777, FAC. SB-4 contained ? a concentration of benzene above the residential direct exposure SCTL. SB-7 yielded a concentration of total xylenes over the respective residential direct exposure SCTL. SB-13 produced a concentration of TRPH above the residential direct exposure SCTL. Benzo(a)pyrene conversion tables were generated for SB-4, SB-7, SB-9, and SB-13. The calculated equivalents were below SCTLs. Contingent SPLP and TRPH fractionation analyses were not authorized by the FDEP site manager due to the high soil concentrations.

Soil analytical results are presented on **Table 2**. Soil analytical results are shown on **Figure 3**. The soil laboratory analytical report has been attached as **Appendix C**. Benzo(a)pyrene conversion tables are included as **Appendix D**.

CONCLUSIONS & RECOMMENDATIONS

Under LSSI guidance, HCR performed a limited soil assessment at the Paxon Express site in Jacksonville, Florida. Laboratory reports indicate concentrations of petroleum compounds above leachability and residential direct exposure SCTLs in soil on site. The site owner expressed interest in obtaining a Site Rehabilitation Completion Order (SRCO) for the property. Based on the results obtained from this assessment, this site is ineligible for an SRCO. A Site Characterization Screening Information (SCSI) worksheet has been attached as **Appendix E**.

FIGURES

	HCR
167	HANDEX CONSULTING & REMEDIATION, LLC

3031 Eliza Road, Suite 2 Tallahassee, Florida 32308 Telephone: (850) 878–0813 Fax: (850) 878–8492 Certificate of Authorization# 26812

PAXON EXPRESS 3157 5th STREET JACKSONVILLE, FLORIDA	
8-23-13	

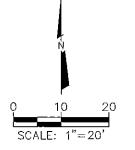
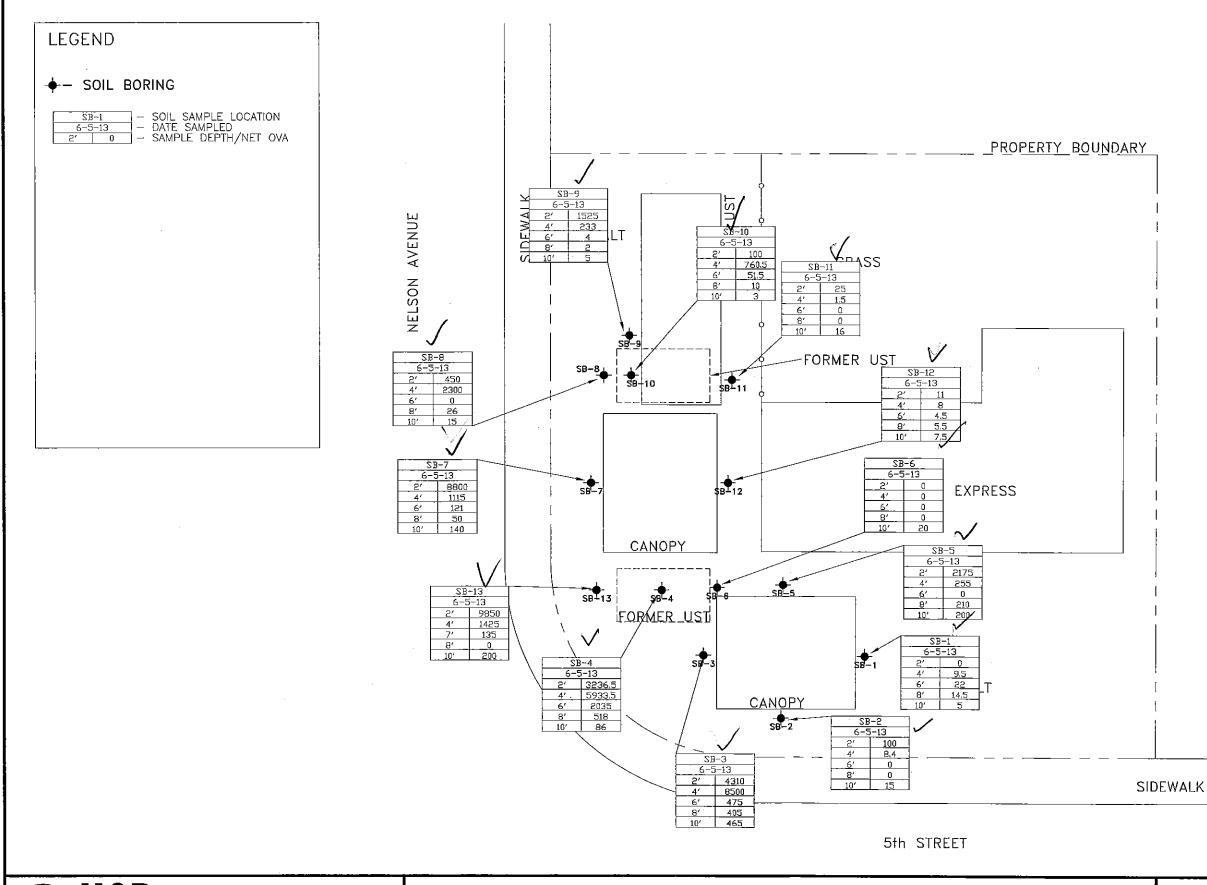
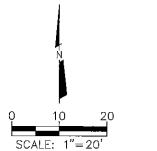
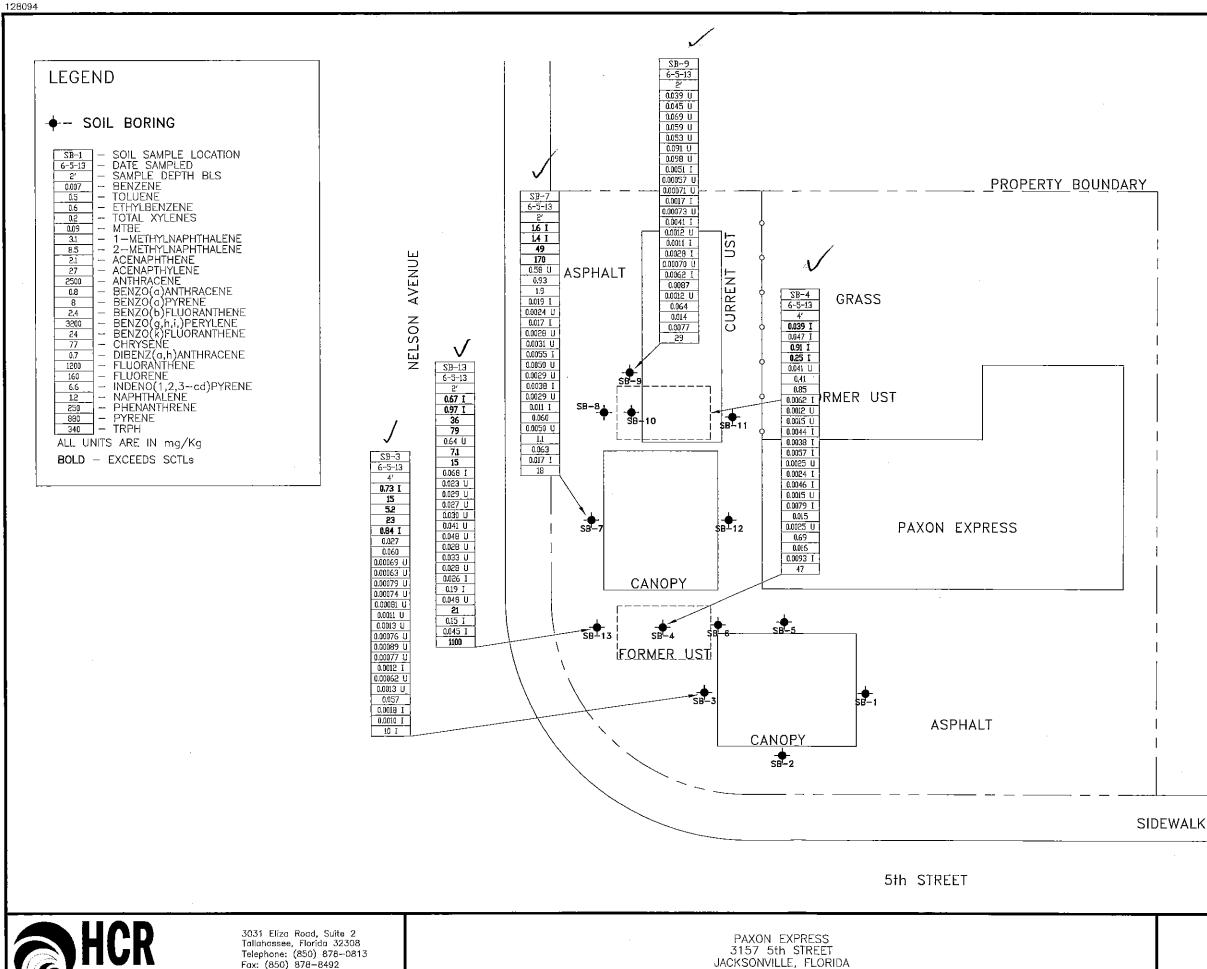



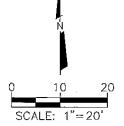
FIGURE 1 SITE PLAN




	HCR
	HANDEX CONSULTING
18%, 🗨	& Remediation, LLC

3031 Eliza Road, Suite 2 Tallahossee, Florida 32308 Telephone: (850) 878-0813 Fax: (850) 878-8492 Certificate of Authorization# 26812

PAXON EXPRESS 3157 5th STREET JACKSONVILLE, FLORIDA	2		
8-23-13			



Fax: (850) 878-8492

Certificate of Authorization# 26812

HANDEX CONSULTING & REMEDIATION, LLC

8-23-13

TABLES

Facility Nar		axon Expres?	IS			ND = No Data	
Facility ID	No:	16/8506940				NS= Not Sample	ed
						BDL = Below De	
	SAMP	LE				OVA SCREEN	NING RESULTS
BORING	DATE	DEPTH	SAMPLE	TOTAL	CARBON	NET	
NO.	COLLECTED	то	INTERVAL	READING	FILTERED	READING	COMMENTS
		WATER	(FBLS)	(ррт)	(ppm)	(ppm)	
	6/5/2013		2	0	-	0	
			4	9.5		9.5	· · · · · · · · · · · · · · · · · · ·
SB-1	Δ_1	<u> </u>	6	40	18	22	·
	V	8	8	32.5	18	14.5	· · · · · · · · · · · · · · · · · · ·
	· ·		10	5	-	5	
	6/5/2013		2	145.8	45.8	100	
	I	<u> </u>	4	75	66.6	8.4	
SB-2		<u> </u>	6	31	31	0	LIGHT PETRO
	<u>— Х</u>	8	8	50 40	50	0	ODOR
	cic inches	<u> </u>	10		25 4690	4310+	
	6/5/2013	<u> </u>	2	9000+		8500+	
			4	9000+	500		STRONG PETRO ODORS
SB-3	· · · · · · · · · · · · · · · · · · ·		6	700	225	475	
1	$\vdash \longrightarrow$	8	8	540	135	405	<u> </u>
			10	700	235	465	
	6/5/2013		2	3270	33,5	3236.5	· · · · · · · · · · · · · · · · · · ·
			4	6500+	566.5	5933.5+ <u>_</u>	VERY STRONG PETRO ODOR
SB-4			6	2750	715	2035	
	ĂĂ	8	8	871	353	518	·
			10	286	200	86	
	6/5/2013	-	2	2567	392	2175	PETRO ODORS
			4	620	365	255	
SB-5			6	520	520	0.	,,,
	\checkmark	8	8	515	305	210	
		•	10	490	290	200	
	6/5/2013		2	0	-	0 .	
			4	0	-	0	
SB-6			6	0	-	0	
		8	8	0		0	
	~		10	35	15	20	
	6/5/2013		2	9000+	200	8800+	STRAINED, STRONG PETRO
		1	4	1500	385	1115	
SB-7			6	286	165	.∵1 21	
		8	8	210	160	50	
			10	420	280	140	
	6/5/2013		2	1350	900	450	
			4	2650	350	2300	
SB-8			6	30	30	0	· · · · · · · · · · · · · · · · · · ·
	$\vdash \lor \checkmark$	8	8	26	0	26	
ł		-	10	15	0	15	· · · · ·
	<u> </u>	<u> </u>	<u> </u>	E 1.2	<u> </u>		<u> </u>

TABLE 1: SOIL SCREENING SUMMARY

acility Nar acility ID I	No:	axon Expres 16/8506940	55			ND = No Data NS= Not Sampled BDL = Below Dete	
	SAMP	LE	-			OVA SCREENII	NG RESULTS
BORING NO.	DATE COLLECTED	DEPTH TO WATER	SAMPLE INTERVAL (FBLS)	TOTAL READING (ppm)	CARBON FILTERED (ppm)	NET READING (ppm)	COMMENTS
	6/5/2013		2	1755	230	1525 -	PETRO ODORS
	1	_	4	370	137	233	
SB-9	N	-	6	4	-	4	
		8	8	2	-	2	
		`	10	5	-	5	
	6/5/2013		2	300	200	100	
			4	863.5	103	760.5	
SB-10	X		6	86.5	35	51,5 ,	-
		8	8	10	-	10	
			10	3	-	3	
	6/5/2013		2	27.3	2.3	25	
SB-11			4	1.5	-	1.5	
SB-11			6	0	-	0	
		8	8	0	-	0	
			10	18.5	2.5	16	
	6/5/2013		2	25	14	11 1	
			- 4	25	17	8 .	
SB-12			б	4.5	-	4.5	<u> </u>
		8	8	5,5	-	5.5	
			10	7.5	-	7.5	
	6/5/2013		2	10000+	150	9850+	VERY STRONG PETRO ODOR
	1		4	2415	990	1425	
SB-13			7	275	140	135	
	V	8	8	65	65	0	
			10	500	300	200	

TABLE 1: SOIL SCREENING SUMMARY

Florida Department of Environmental Protection -- Bureau of Petroleum Storage Systems

TABLE 2: SOIL ANALYTICAL SUMMARY - VOAs, TRPHs and Metals

Facility ID#: 16/8506940

Facility Name: Paxon Express

See notes at end of table.

	San	Sample		OVA					Laboratory Analyses	/ Analyses					
Boring/ Well No.	Date Collected	Depth to Water	Sample Interval	Net OVA Reading	Benzene	Ethyl- benzene	Toluene	Total Xylenes	MTBE	TRPHs	Arsenic	Cad-mium Chro-mium	Chro-mium	Lead	
		(#)	∕(fbls)	(mqq)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Comments
с С	6/6/2013	8	4	8500+	0.7315	5.2	-15	23 ·	0.841	101	NS	NS	SN	NS	**Dilution Factor 200**
?							,								
100	6/6/2013	8 1	4	5933.5+	0.039	0.91	0.0471	0.251	0.041 U	47	NS	NS	NS	SN	**Dilution Factor 40**
† 0 0		`										-			
י נ נ	6/6/2013	ی ه	2'	8800+	1.61	49	141	170	0.58 U	18	NS	NS	NS	NS	**Dilution Factor 500**
20					-			Ş							
0 0 0	6/6/2013	8 \	2'	1525	0.039 U	0 069 U	0.045 U	0.059 U	0.053 U	29	NS	NS	NS	NS	**Dilution Factor 40**
0 0															
5 5 7	6/6/2013	8	2'	9850+	0.671	36	1 70.0	62	0.64 U	1100	NS	NS	NS	NS	**Dilution Factor 500**
2.40							`	1	r				-		
Leachabil	eachability Based on Groundwater Criteria (mg/kg)	roundwater (Sriteria (mg/	kg)	D.007	0.6	0.5	0.2	0.09	340	*	2.7	38	*	
Direct Ext	Direct Exposure Residential (mg/kg)	tial (mg/kg)			1.2	1,500	7,500	130	4,400	460	2.1	82	210	400	
Notes:	NA = Not Available.	lable.													•

NS = Not Sampled.

* = Leachability value may be determined using TCLP.

I = The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U = Indicates that the compound was analyzed for but not detected

If an analyte is not detected, report the method detection limit [i.e., 0.01 U or ND(0.01); BDL or <0.01 are not acceptable].

Table 2 Soil Analytical xlsx

Florida Department of Environmental Protection -- Bureau of Petroleum Storage Systems

TABLE 2: SOIL ANALYTICAL SUMMARY - Non-Carcinogenic PAHs

Facility ID#: 16/8506940

Facility Name: Paxon Express

	Sample			OVA					Labo	Laboratory Analyses	ses					
Boring/ Well No.	Date Collected	Depth to Water	Sample Interval	Net OVA Reading	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,ľ) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	
-	r	(ft)	(fbis)	(mqq)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Comments
CD.4(6/6/2013	8	4	8500+	0.057	0.027	0.060	0.00069 U	0.00069 U 0.00063 U	0.00079 U	0.0013 U	0,00121	0.00062 U	0.00181	0.00101	
								}								
יי ג	6/6/2013	8	4	6933.5+	0.69	0.41	0.85	0.00621	0.0012 U	0.0015 U	0.0025 U	0.00791	0.015	0.016	0.0093 1	**Dilution Factor 2**
† 0								-								
\ aa	6/6/2013	8	2'	8800+	1.1	0.93	1.9	0.0191	0.0024 U	0.0171	0.0050 U	0.0111	0:060	0.063	0.0171	**Dilution Factor 4**
/ jap																
ک _{ہ مع}	6/6/2013	8	2'	1525	0.064	0.091	0.098	0.00511	. 0.00057 U 0.00071 U	0.00071 U	0.0012 U	0,00621	0.0087	0.014	0.0077	
6-00																
CD 12	6/6/2013	8	2'	9850+	21	1.1	15	0.068	0.023 U	0.029 U	0.048 U	0.026 [0.0191	0.0151	0.045 1	** Dilution Factor 40**
c1-00																
Leachability .	Leachability Based on Groundwater Criteria (mg/kg)	water Crite	vria (mg/kg)		1.2	3.1	8.5	2.1	27	2,500	32,000	1,200	160	250	880	
Direct Expos	Direct Exposure Residential (mg/kg)	"ng/kg)			55	200	210	2,400	1,800	21,000	2,500	3,200	2,600	2,200	2,400	
Notes:	NA = Not Available.	ble.														

NS = Not Sampled.

i = The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.U = Indicates that the compound was analyzed for but not detectedIf analyte is not detected, report the method detection limit [i.e., 0.01 U or ND(0.01); BDL or <0.01 are not acceptable].

Table 2 Soil Analytical.xisx

c,

See notes at end of table. TABLE 2: SOIL ANALYTICAL SUMMARY - Carcinogenic PAHs Facility Name: Paxon Express Facility ID#: 16/8506940

Facilit	Facility ID#: 10/0000940	0/00/0	34U		raciiity I	Name: Paxon Express		press		ő		וות חו ומחופי	
	Sample	ple		AVO				Laboratory Analyses	Analyses				
Boring/	Date	Depth to Water	Depth to Sample Water Interval	Net OVA Reading	Benzo (a)	Benzo (a) anthra-	Benzo (b) fluoran-	Benzo (k) fluoran-	Chry- sene	Dibenz (a,h) anthra-	Indeno (1,2,3-cd)	Benzo (a) pyrene	
Well No.	Collected	(H)	(fbls)	(mqq)	pyrene (mg/kg)	cene (mg/kg)	thene (mg/kg)	thene (mg/kg)	(mg/kg)	cene (mg/kg)	pyrene (mg/kg)	equivalent (mg/kg)	Comments
SB-3	6/6/2013 ~	8	4	8500+	0.00081 U	0.00074 U	0.0011 U	0.00076 U	0.00089 U	U 77000.0	0.0013 U	•	
v as	6/6/2013	8	4	5933.5+	0.00381	0.0044	0.0057	0.00241	0.00461	0.0015 U	0.0025 U	0.0	**Dilution Factor 2**
		/					_						
св_7	6/6/2013	8	2'	8800+	0.0031 U	0.0028 U	0.00551	0.0029 U	0.0038 1	0.0029 U	0.0050 U	0.0	**Dilution Factor 4**
1													
0 20	6/6/2013	8	2'	1525	0.00073 U	0.00171	0.00411	0.00111	0.00281	0.00070 U	0.0012 U	0.0	
6-00		/											
SR-13	6/6/2013	V 8	2'	9850+	0:030 U	0.027 U	0.041 U	0.028 U	0.033 U	0.028 U	0.048 U	0.0	**Dilution Factor 40**
21.22													
Leachabili	eachability Based on Groundwater Criteria (mg/kg)	Groundwate	er Criteria (I	mg/kg)	8	0.8	2.4	24	77	0.7	6.6	*	
Direct Exp	Direct Exposure Residential (mg/kg)	intial (mg/k	g)		0.1	#	#	#	#	#	#	0.1	
Notor.	NA - Not Audioble	allabla											

Notes: NA = Not Available.

NS = Not Sampled.

** = Leachability value not applicable.

= Direct Exposure value not applicable except as part of the Benzo(a)pyrene equivalent.

U = Indicates that the compound was analyzed for but not detected

If analyte is not detected, report the method detection limit [i.e., 0.01 U or ND(0.01); BDL or <0.01 are not acceptable].

APPENDICES

Appendix B

													ge 1 of	
Boring	g/Well N	lumber	•			Permit	Number:				FDEP Fac	cility Iden	tificatio	on Number:
		FS-	TMW-1						NA				NA	
Site N	ame:					Boreho	le Start Da	ate:	10/10/19	Borehole Start 7	Fime:	9:10	✓ A	
		JEA V	Vest 5th	St			End Da		10/10/19	End T	-	9:30	✓ A	M PM
	onmenta					Geologi	ist's Name				Field Eng			
	kel & A ng Comp		tes Engii	neering		nt Thick	tness (incl		avidson, P.G. Borehole Diam	eter (inches).		Gabriel F Borehole		
		-	illing & T	estina	1 avenie		one	105).	Dorenoie Diam	1.25	1		-	5
	ng Meth		0		t Borehol	e DTW (i	in feet	Me	asured Well DTW	(in feet after	OVA (list	model ar	nd chec	k type):
Hand	d Auge	/Hollo	w Stem	from so	oil moistu	ire conten	t): 3	W	vater recharges in	well): 3	No	ne		FID PID
Dispo	sition of	Drill (Cuttings [o	check m	ethod(s)]:	D	rum	✓ Spread	Backfill	Sto	ockpile		Other
(descr	ibe if ot	her or i	multiple i	tems are	checked	<i>d):</i>								
Boreh	ole Com	pletion	ı (check o	ne):	✓	Well	Grou	ıt	Bentonite	Backfil	1	Other (d	lescribe	e)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)		de grain size bas and ot	e Description sed on USCS, odo her remarks)	-	ymbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
HA							1		psoil then Fine S rs or staining	Sand; light browr	n and grey;	SP	D	
							2					SP	D	
							2	2'-4' Cla	ayey Sand; orar	nge, no odors or	staining	SC	М	
							3	Ground	lwater at 3 feet I	bls		SC	W	
							4	4'-8' Fir	ne Sand; light gr	rey, no odors or s	staining	30	vv	
							4'-8' Fine Sand; light grey, no odors or staining 5 6 SP S SP S							
DP	60"													
							7					SP	S	
							8					SP	S	
							9	8'-9' Cla staining		lium grey; no ode	ors or	SC	S	
								9'-10' F	ine Sand; medi	um grey; no odo	rs or stainir	ng SP	S	
DP	60"						10 	10'-12' staining		nedium grey; no o	odors or	sc	S	
							12					SC	S	

												Pag	ge 2 of	2
Borin	g/Well N			FDEP I	Facility I		tion Num	ber:	Site Name:		Borehole			10/11/19
	FS-T	MW-1				NA			JEA We	est 5th St]	End Da	ite:	10/11/19
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)		de grain size based and othe	er remarks)		USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
DP							13	12'-13'	Cley Sand; mediu	m grey; no odors	or staining	SC	S	
							14	13'-15'	Fine Sand; light b	rown, no odors or	staining	SP	S	
							15					sP	S	
								End bo	ring at 15 feet bgs	3				
							16							
							17							
							18							
							2							
							20							
							21							
							22							
							23							
							24							
							25							
							26							
							27							
							28							
							29							
							30		ST = Shelby Tube:					

Sample Type Codes: **PH** = Post Hole; **HA** = Hand Auger; **SS** = Split Spoon; **ST** = Shelby Tube; **DP** = Direct Push; **SC** = Sonic Core; **DC** = Drill Cuttings Moisture Content Codes: $\mathbf{D} = Dry$; $\mathbf{M} = Moist$; $\mathbf{W} = Wet$; $\mathbf{S} = Saturated$

													ge 1 of	
Boring	g/Well N					Permit	Number:				FDEP Fa	cility Iden		on Number:
0' N		FS	-TMW-2			D 1			NA	D 110/ //	D'		NA	_
Site N						Boreno	le Start Da		10/10/19	Borehole Start		11:00	✓ A	
г ·			Vest 5th	St		C 1	End Da		10/10/19	End T		11:20	✓ A	M PM
	onmenta اهما & ۵		actor: tes Engii	neerina	PLLC	Geologi	ist's Name		avidson, P.G.		Field Eng	Gabriel F		na P.F
	ng Comp			licening		ent Thick	mess (incl		Borehole Diam	neter (inches):		Borehole		
	• •	•	illing & T	esting			one	,		1.25			-	5
	ng Meth			**	t Borehol	e DTW (i	in feet	Mea	asured Well DTW	/ (in feet after	OVA (lis	t model ar	nd chec	k type):
Han	d Auge	/Hollo	w Stem	from so	oil moistu	ire conten	it): 8		vater recharges in	well): 8	No	one		FID PID
Dispo	sition of	Drill (Cuttings [o	check m	ethod(s)]:	D	rum	Spread	Backfill	St	ockpile		Other
(descr	ibe if ot	her or i	multiple i	tems are	checked	<i>l):</i>								
Boreh	ole Con	pletior	(check o	ne):	v	Well	Grou	ıt	Bentonite	Backfil	1	Other (d	lescribe	e)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)		de grain size bas and of	e Description sed on USCS, odo ther remarks)		USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
НА								0-3' Fin	e Sand; light gr	ey; no odors or s	staining	SP	D	
							1							
							2					SP	D	
							3					SP	D	
								3'-7' Fir no stair		rey; PETROLEU	M ODORS	s, SP	D	
							4	no stai	iing					
							_					SP	D	
							5							
DP	48"						6					SP	D	
							7					SP	D	
									andy Clay; light LEUM ODORS	t grey and brown	,	CL	м	
							8		water at 8'	, no staining		02		
												CL	w	
							9							
							10					CL	S	
DP	48"						11					CL	S	
												CL	s	
							12					01		

												Pag	ge 2 of	2
Borin	g/Well N			FDEP F	Facility I		tion Num	ber:	Site Name:		Borehole			10/11/19
	FS-T	MW-2				NA			JEA We	st 5th St		End Da	te:	10/11/19
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)		de grain size based and othe	er remarks)		USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
DP							13	PETRC	Sandy Clay; light (DLEUM ODORS, n	o staining		CL	S	
							14		Fine Sand; mediu S, no staining	m brown, PETRC	DLEUM	SP	S	
							15					SP	S	
								End bo	ring at 15 feet bgs					
							16							
							17							
							18							
							2							
							20							
							21							
							22							
							23							
							24							
							25							
							26							
							27							
							28							
							29							
							30		ST = Shelby Tube:					

Sample Type Codes: **PH** = Post Hole; **HA** = Hand Auger; **SS** = Split Spoon; **ST** = Shelby Tube; **DP** = Direct Push; **SC** = Sonic Core; **DC** = Drill Cuttings Moisture Content Codes: $\mathbf{D} = Dry$; $\mathbf{M} = Moist$; $\mathbf{W} = Wet$; $\mathbf{S} = Saturated$

WELL CONSTRUCTION AND DEVELOPMENT LOG

		W	ELL C	CONST	FRUCT	ON I	DATA					_
Well Number:	Site Nan	ne:					FDEP Facility I.D	. Numb	er: W	'ell Instal	l Date(s):	
FS-TMW-1		JEA	A West 5	th Stree	ət		NA			10/	11/2019	
Well Location and Type (check a	appropriate	boxes):	Well Put	rpose:	Perched	Monit	oring		Well In	istall Met	hod:	
On-Site	Right-of-	Way					r-Table) Monitoring Deep Monitoring	g		Direct	Push	
	Flush-to-	Grade					Other (describe)		Surface	Casing l	Install Met	thod:
If AG, list feet of riser above land su	arface:						× ,			P∖	/C	
Borehole Depth Well I	Depth	Borehole D	Diameter	Manhol	le Diameter		Well Pad Size: N	one				
(feet): 15 (feet):	13	(inches):	3	(inches)): 8	3		feet	by	fee	t	
Riser Diameter and Material:	Ris	ser/Screen	Flush-	-Threaded	d		Riser Length:	3	feet			
1" PVC	Co	nnections:	Other	(describe	e)					o <u>3</u>	feet	
Screen Diameter and Material:			Screen S	Slot Size:	:		Screen Length:	10 j	feet			
1" PVC				0.0	010"		from	3	feet to	o <u>13</u>	feet	
1 st Surface Casing Material:			1 st Surfa	ice Casin	ng I.D. (inch	es):	1st Surface Casing	g Length	:	feet		
also check: Permanent	Te	mporary					from	0	feet to	o <u> </u>	feet	
2 nd Surface Casing Material:			2 nd Surfa	ace Casiı	ng I.D. (incl	nes):	2 nd Surface Casing					
also check: Permanent	Te	mporary					from	0	feet to	o <u> </u>	feet	
3 rd Surface Casing Material:			3 rd Surface Casing I.D. (inches):				3 rd Surface Casing					
also check: Permanent	Te	mporary					from	0	feet to	0	feet	
Filter Pack Material and Size:	Prepack	ed Filter Aro	und Scree	en (check	k one):		Filter Pack Length					
20/30 Sand	✓ Ye	s		0			from	3	feet to	o <u>13</u>	feet	
Filter Pack Seal Material and	4						Filter Pack Seal L	ength:		2 fee	t	
Size:		3	0/60 Fine	e Sand			from	1	feet to	o <u>3</u>	feet	
Surface Seal Material:			Neat Ce	mont			Surface Seal Leng					
			meat Ce	ment			from	0	feet to	o <u>1</u>	feet	

		WELL DEVE	LO	PMENT DATA							
Well Development Date:	Well	Development Method	(checl	k one): Surge/	Pump 🔽 Pump	Compressed Air					
10/11/19		Other (describe)									
	Centrif	fugal Peristaltic		Depth to Groundwater	(before developing in	n feet):					
Submersible Other (describe)					3						
Pumping Rate (gallons per minute): Maximum Drawdown of Groundwater During Well Purged Dry (check one):											
0.7		Development (feet):		NA	Yes	✓ No					
Pumping Condition (check one):	otal Dev	elopment Water		Development Duration	Development Wate	er Drummed					
Continuous Intermittent	emoved	(gallons): 20)	(minutes): 30	(check one):	Yes Vo					
Water Appearance (color and odor) At	Start of E	Development:		Water Appearance (col	or and odor) At End	of Development:					
Brown c	loudy				Clear						

WELL CONSTRUCTION OR DEVELOPMENT REMARKS

Temporary monitoring well FS-TMW-1 installed in the north right-of-way of West 5th Street northeast of the intersection with Pickettville Road

WELL CONSTRUCTION AND DEVELOPMENT LOG

		W	ELL C	CONST	RUCTIO	N E	DATA					
Well Number:	Site N	lame:]	FDEP Facility I.D). Numbe	er: We	ell Install	l Date(s):	
FS-TMW-2		JE/	A West 5	th Stree	t		NA			10/11/2019		
Well Location and Type (cher	eck appropri	ate boxes):	Well Pu	Well Purpose: Perched Monitoring					Well Ins	Well Install Method:		
On-Site	Right-o y	f-Way					-Table) Monitoring	3		Direct	Push	
	Flush-t	o-Grade		Intermediate or Deep Monitoring Remediation or Other (describe)					nstall Method:			
If AG, list feet of riser above lan	nd surface:		1	P					PV	'C		
Borehole Depth We	ell Depth	Borehole I	Diameter	Manhol	e Diameter	7	Well Pad Size: N	one	<u> </u>			
(feet): 15 (fee	eet): 15	(inches):	3	(inches)	: 8			feet	by	feet		
Riser Diameter and Material:		Riser/Screen	✓ Flush-	-Threaded		J	Riser Length:	5 f	feet			
1" PVC	(Connections:	Other	(describe	;)				feet to	5	feet	
Screen Diameter and Material:			Screen S	Slot Size:		,	Screen Length:	10 f	feet			
1" PVC				0.0)10"		from	5	feet to	15	feet	
1 st Surface Casing Material:			1 st Surface Casing I.D. (inches):			:	1st Surface Casing	g Length:	:	feet		
also check: Permanent	t 🗌	Temporary					from	0	feet to		feet	
2 nd Surface Casing Material:	:		2 nd Surfa	ace Casin	ng I.D. (inches)): 2	2 nd Surface Casing	g Length	1: <u> </u>	feet		
also check: Permanent	t 🗌	Temporary					from	0	feet to		feet	
3 rd Surface Casing Material:			3 rd Surfa	ace Casin	g I.D. (inches):): 〔	3rd Surface Casing	g Length	ı:	feet		
also check: Permanent	ıt 🔽 '	Temporary					from	0	feet to		feet	
Filter Pack Material and Size	e: Prepa	cked Filter Aro	und Scree	en (check	one):]	Filter Pack Length	1:	1	0 feet		
20/30 Sand	•	Yes		0			from	5	feet to	15	feet	
Filter Pack Seal Material and	d			0		J	Filter Pack Seal L	ength:		2 feet	-	
Size:		3	0/60 Fine	e Sand			from	3	feet to	5	feet	
Surface Seal Material:			Neat Ce	mont		,	Surface Seal Leng					
			iveal Ce	menit			from	0	feet to	3	feet	

		WELL DEVE	LO	PMENT DATA						
Well Development Date:	Well	Development Method	(checl	k one): Surge/P	ump 🔽 Pump	Compr	essed Air			
10/11/19		Other (describe)								
	Centrif	fugal Peristaltic		Depth to Groundwater (I	before developing in f	feet):				
Submersible Other (describe)					8					
Pumping Rate (gallons per minute): Maximum Drawdown of Groundwater During Well Purged Dry (check one):										
0.7		Development (feet):		NA	Yes	✓ No				
Pumping Condition (check one):	Total Dev	elopment Water		Development Duration	Development Water	Drummed				
Continuous V Intermittent	Removed	(gallons): 10)	(minutes): 30	(check one):	Yes	✓ No			
Water Appearance (color and odor) At	Start of D	Development:		Water Appearance (colo	r and odor) At End of	f Developmen	t:			
Brown	loudy				Clear					

WELL CONSTRUCTION OR DEVELOPMENT REMARKS

Temporary monitoring well FS-TMW-2 installed in the southbound right-of-way of Melson Avenue northeast of the intersection with West 5th Street

Appendix C

Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE NAME:	LEA #S	STA ST	WEST		SI	TE CATION:	5ry s	-u	EST/ P	NET	VIL	5 RD	
	FS-T			SAMPLE	ID: CS-	TMW	~ 1					0/2019	
	13-1	101001				GING DA							
WELL		TUBIN			LL SCREEN	INTERVAL	ST				PURG	E PUMP TYP	E
DIAMETEI	R (inches): 2	DIAME	TER (inches):	/ ~ /		eet to 12 f		WATE	R (feet): 1.8	18	OR BA	ILER: PP	
WELL VO	LUME PURGE: It if applicable)	1 WELL VO	LUME = (TOT	AL WELL DEF	PTH – STA							A . 1 4	
	NT VOLUME P	URGE: 1 EQ	= (JIPMENT VOL					et) X TL	D. O.Y JBING LENGTH				gallons
(only fill ou	it if applicable)			= g	allons + (gallo	ons/foot X		fee	t) +		gallons =	gallons
	JMP OR TUBIN WELL (feet):	^G 3.39		/IP OR TUBIN WELL (feet):	3.BB	PURGIN	IG ED AT: /C	20	PURGING ENDED AT	1094		OTAL VOLU PURGED (gal	ME lons): LHO
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (^o C)	CONI (circle u µmhos or (µS/	inits) /cm	DISSOLVED OXYGEN (circle units) (mg/2 or % saturation	TURB (NT		COLOR (describe)	ODOR (describe)
1028	0.90	0.80	0.10		6.52	26.14	50.	1	0.50	10.7	-	Cern	renz
1030	0.20	1.00	0,10		C.54	26.26	500	9	0,46	6.	03	CUESON	NORE
1032	0.20	1.20	0.10		6.00	76.26	511		0.45	22		CUERA	Nan
NC 01	2.20	1.40	010		6.60	2027	512	-	0.46	21	9	CUEAN	NONE
										-			
		-											
1			_										-
WELL CA	PACITY (Gallon	s Per Foot):	0.75" = 0.02;	1" = 0.04;				• 0.37; 6" = 0.0		5 " = 1.02			2" = 5.88
	EQUIPMENT C	and the second		BP = Bladder	' = 0.0014; Pump; E	SP = Electric				Peristaltic I	1/2" = Pump;		8" = 0.016 er (Specify)
					SAMP	LING DA	ATA						<u> </u>
	BY (PRINT) / A Pastrana			SAMPLER	SIGNATURI	E(S):			SAMPLING INITIATED A	1:103	4	SAMPLING ENDED AT:	1045
	TUBING WELL (feet):	3,83		TUBING MATERIAL C		S			FILTERED:				E: <u>1</u> μm
	CONTAMINATIO				TUBING		eplaced)	- natate	DUPLICATE			N	
	PLE CONTAINE		T		SAMPLE PF	RESERVATIO			INTEND		SAM	· · · · · · · · · · · · · · · · · · ·	SAMPLE PUMP
SAMPLE	#	MATERIAL	VOLUME	PRESERVAT	IVE	TOTAL VOL	FI	INAL	ANALYSIS A	ND/OR	EQU	IPMENT	FLOW RATE mL per minute)
ID CODE	CONTAINERS 3	CODE CG	40 mL	USED HCI	ADDE	D IN FIELD (I		<u>рН</u> <2	EPA 8260 (B	TEX/M)		FPP	<90
	1	AG	250 mL	-		-		-	EPA 8270	4	A	APP	<90
	2	PE	250 mL	HNO3		-		<2	RCRA 4 M	letals	A	APP	<90
				land and an open statement for the part of the second					1				
REMARKS		1.0	-										
		1.12 N			DE - 0-1	unthulana:	DD - Dat	(Dren) d		000: 7	Telle	0 - 044	or (Specific)
	G EQUIPMENT	AG = Amber	Glass; CG =	Clear Glass;		/ethylene;	PP = Poly Bladder P		ene; S = Silic ESP = Elect		= Teflor		er (Specify)
		F	RFPP = Revers	e Flow Perista	ltic Pump;	SM = Straw	Method (1	Tubing	Gravity Drain);		ther (S		
	STABILIZATIC								.C. (SEE FS 221)	2. SECTIO	N 3)		

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE	CA				SI	TE		A			
	EA STI.	I ST. WE	55					VEST/M	Ecso	NAVE.	
WELL NO:	FS-T	MW-Z	2	SAMPLE	ID: FS	-TMW	-2		DATE: 1	0/29/2019)
		-			PURC	GING DA	TA				
WELL	4 77	TUBI		WE	LL SCREEN	INTERVAL	STATIC I	DEPTH ER (feet): 8.9	(PURGE PUMP	
DIAMETER	(inches): 2"		ETER (inches):					WELL CAPAC	8	OR BAILER: F	P
(only fill out	if applicable)			15.00						-	
EQUIPMEN	IT VOLUME P	URGE: 1 EC		1 5.00 = PUMP VOL	_feet – 🛛 🕅 UME + (TUE	. 0 G	feet) X	0.04 UBING LENGTH			
(only fill out	if applicable)				allons + (
INITIAL PU	MP OR TUBIN		FINAL PUI			PURGIN	ons/foot X	feet	+	gallons	
DEPTH IN	WELL (feet):	12.88		WELL (feet):	14.0		ED AT: 1154	ENDED AT:	121-	PURGED	(gallons): 1000
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm of µS/cm	DISSOLVED OXYGEN (circle units) mg/L <u>or</u> % saturation	TURB (NT	IDITY COLO Us) (descr	
1204	0.50	0.00	0.05		4.31	28.60	212	1.20	7100		m PRINO
1214	0.50	1.00	0.05		679	23.67	705	1.05	7100	Brown	
			0.05						ļ		1 3
					- Ru	6cs	pry-		-		e.
					,						
		<u> </u>									
								······			
WELL CAP	ACITY (Gallon	s Per Foot):	0.75" = 0.02;	1" = 0.04;	1.25" = 0.06	5; 2 " = 0.1	6; 3" = 0.37;	4" = 0.65;	5" = 1.02	; 6" = 1.47;	12 " = 5.88
			./Ft.): 1/8" = 0.			aleral television and an experimental strength of the second strengt		004; 3/8" = 0	.006;	1/2" = 0.010;	5/8" = 0.016
PURGING	EQUIPMENT C	ODES:	B = Bailer;	BP = Bladder F	manager and an and an and an and an and an	SP = Electric	Submersible Pu	mp; PP = Pe	eristaltic F	Pump; O = C	Other (Specify)
SAMPLED I	3Y (PRINT) / A	FFILIATION:	ſ	SAMPLER(S)	SIGNATURE			CAMPLING		CAMPLI	
	Pastrana				M			SAMPLING	: 122		
PUMP OR 1		1110		TUBING	~			FILTERED:	N	FILTER	SIZE: <u>1</u> μm
	VELL (feet):	14.0		MATERIAL CO				on Equipment Ty	oe:		
	ONTAMINATIO				TUBING		eplaced)	DUPLICATE:	Y	N	
SAMP SAMPLE	LE CONTAINE #	ATERIAL	ATION	PRESERVAT		ESERVATIO		INTENDE ANALYSIS AI		SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	CODE	VOLUME	USED		D IN FIELD (r	mL) pH	METHO	D	CODE	(mL per minute)
	3	CG	40 mL	HCI		-	<2	EPA 8260 (BT		RFPP	<90
	1	AG	250 mL	-		-	-	EPA 8270 (I		APP	<90
	2	PE	250 mL	HNO3		-	<2	RCRA 4 Me	etals	APP	<90
	2	AG	10nL	Hesay		~	62	TRPHF	L-Pro	APP	<90
	2	CG	YOUL	*		~	-	EDB		Are	<90
REMARKS:		-	010	01		Q	16AD DN	4 2×	0	INC SAM	01
	CODES	AG = Amber	Blass CG =	Clear Glass;	PE = Poly		PP = Polypropyl	1 *			Dther (Specify)
	EQUIPMENT	CODES:	APP = After Pe	ristaltic Pump;	B = Bail		Bladder Pump:	ESP = Electri			orner (opecity)
			RFPP = Revers	e Flow Peristal	tic Pump;	SM = Straw	Method (Tubing	Gravity Drain);		ther (Specify)	-
OTES: 1.	The above of	do not cons	stitute all of t	he informati	on require	d by Chapte	er 62-160, F.A	.C.			

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

Appendix D

Pace Analytical Services, LLC 8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

November 06, 2019

Mr. Scott A. Davidson, P.G. Meskel & Associates Engineering, Inc. 8936 Western Way Jacksonville, FL 32256

RE: Project: JEA 5TH ST Pace Project No.: 35508499

Dear Mr. Davidson, P.G.:

Enclosed are the analytical results for sample(s) received by the laboratory on October 30, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Vorth J.R.

Todd Rea todd.rea@pacelabs.com (904) 903-7948 Project Manager

Enclosures

cc: Mr. Gabriel S. Pastrana, P.E., Pastrana Engineering & Environment, LLC

Pace Analytical Services, LLC 8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

CERTIFICATIONS

Project:	JEA 5TH ST
Pace Project No.:	35508499

Ormond Beach Certification IDs	
8 East Tower Circle, Ormond Beach, FL 32174	Missouri Certification #: 236
Alaska DEC- CS/UST/LUST	Montana Certification #: Cert 0074
Alabama Certification #: 41320	Nebraska Certification: NE-OS-28-14
Arizona Certification# AZ0819	New Hampshire Certification #: 2958
Colorado Certification: FL NELAC Reciprocity	New Jersey Certification #: FL022
Connecticut Certification #: PH-0216	New York Certification #: 11608
Delaware Certification: FL NELAC Reciprocity	North Carolina Environmental Certificate #: 667
Florida Certification #: E83079	North Carolina Certification #: 12710
Georgia Certification #: 955	North Dakota Certification #: R-216
Guam Certification: FL NELAC Reciprocity	Oklahoma Certification #: D9947
Hawaii Certification: FL NELAC Reciprocity	Pennsylvania Certification #: 68-00547
Illinois Certification #: 200068	Puerto Rico Certification #: FL01264
Indiana Certification: FL NELAC Reciprocity	South Carolina Certification: #96042001
Kansas Certification #: E-10383	Tennessee Certification #: TN02974
Kentucky Certification #: 90050	Texas Certification: FL NELAC Reciprocity
Louisiana Certification #: FL NELAC Reciprocity	US Virgin Islands Certification: FL NELAC Reciprocity
Louisiana Environmental Certificate #: 05007	Virginia Environmental Certification #: 460165
Maryland Certification: #346	West Virginia Certification #: 9962C
Michigan Certification #: 9911	Wisconsin Certification #: 399079670
Mississippi Certification: FL NELAC Reciprocity	Wyoming (EPA Region 8): FL NELAC Reciprocity

SAMPLE SUMMARY

Project:JEA 5TH STPace Project No.:35508499

Lab ID	Sample ID	Matrix	Date Collected	Date Received
35508499001	FS-TMW-1	Water	10/29/19 10:34	10/30/19 12:10
35508499002	FS-TMW-2	Water	10/29/19 12:24	10/30/19 12:10

JEA 5TH ST

Project:

SAMPLE ANALYTE COUNT

Pace Project No	o.: 35508499				
Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
35508499001	FS-TMW-1	EPA 6010	ATC	4	PASI-O
		EPA 8270 by SIM	CB1	20	PASI-O
		EPA 8260	VAA	57	PASI-O
35508499002	FS-TMW-2	EPA 8011	TSW	1	PASI-O
		FL-PRO	RJR	3	PASI-O
		EPA 6010	ATC	1	PASI-O
		EPA 8270 by SIM	CB1	20	PASI-O
		EPA 8260	SK1	37	PASI-O

Project: JEA 5TH ST

Pace Project No.: 35508499

Sample: FS-TMW-1	Lab ID:	35508499001	Collected	d: 10/29/1	9 10:34	Received: 10/	'30/19 12:10 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical	Method: EPA 6	010 Prepai	ration Meth	od: EPA	3010			
Arsenic	7.1 U	ug/L	10.0	7.1	1	10/31/19 06:45	11/01/19 00:10	7440-38-2	
Cadmium	0.33 U	ug/L	1.0	0.33	1	10/31/19 06:45	11/01/19 00:10	7440-43-9	
Chromium	1.7 U	ug/L	5.0	1.7	1	10/31/19 06:45	11/01/19 00:10	7440-47-3	
Lead	4.6 U	ug/L	10.0	4.6	1	10/31/19 06:45	11/01/19 00:10	7439-92-1	
8270 MSSV PAHLV by SIM	Analytical	Method: EPA 8	270 by SIM	Preparatio	on Meth	od: EPA 3510			
Acenaphthene	0.040 U	ug/L	0.50	0.040	1	11/01/19 10:23	11/02/19 19:50	83-32-9	
Acenaphthylene	0.030 U	ug/L	0.50	0.030	1	11/01/19 10:23	11/02/19 19:50	208-96-8	
Anthracene	0.043 U	ug/L	0.50	0.043	1	11/01/19 10:23	11/02/19 19:50	120-12-7	
Benzo(a)anthracene	0.055 U	ug/L	0.10	0.055	1	11/01/19 10:23	11/02/19 19:50	56-55-3	
Benzo(a)pyrene	0.12 U	ug/L	0.20	0.12	1	11/01/19 10:23	11/02/19 19:50	50-32-8	
Benzo(b)fluoranthene	0.027 U	ug/L	0.10	0.027	1	11/01/19 10:23	11/02/19 19:50	205-99-2	
Benzo(g,h,i)perylene	0.15 U	ug/L	0.50	0.15	1	11/01/19 10:23	11/02/19 19:50	191-24-2	
Benzo(k)fluoranthene	0.16 U	ug/L	0.50	0.16	1	11/01/19 10:23	11/02/19 19:50	207-08-9	
Chrysene	0.026 U	ug/L	0.50	0.026	1	11/01/19 10:23	11/02/19 19:50	218-01-9	
Dibenz(a,h)anthracene	0.13 U	ug/L	0.15	0.13	1	11/01/19 10:23	11/02/19 19:50	53-70-3	
Fluoranthene	0.018 U	ug/L	0.50	0.018	1	11/01/19 10:23	11/02/19 19:50		
Fluorene	0.088 U	ug/L	0.50	0.088	1	11/01/19 10:23	11/02/19 19:50		
Indeno(1,2,3-cd)pyrene	0.12 U	ug/L	0.15	0.12	1	11/01/19 10:23	11/02/19 19:50		
1-Methylnaphthalene	0.19 U	ug/L	2.0	0.19	1	11/01/19 10:23	11/02/19 19:50		
2-Methylnaphthalene	0.68 U	ug/L	2.0	0.68	1	11/01/19 10:23	11/02/19 19:50		
Naphthalene	0.29 U	ug/L	2.0	0.29	1	11/01/19 10:23	11/02/19 19:50		
Phenanthrene	0.16 U	ug/L	0.50	0.16	1	11/01/19 10:23	11/02/19 19:50		
Pyrene	0.032 U	ug/L	0.50	0.032	1	11/01/19 10:23	11/02/19 19:50		
Surrogates	0.052 0	ug/L	0.50	0.002		11/01/13 10.23	11/02/10 10:00	125 00 0	
2-Fluorobiphenyl (S)	71	%	38-92		1	11/01/19 10:23	11/02/19 19:50	321-60-8	
p-Terphenyl-d14 (S)	80	%	54-112		1	11/01/19 10:23	11/02/19 19:50		
8260 MSV		Method: EPA 8				11/01/10 10:20	11,02,10 10.00		
	-								
Acetone	5.3 U	ug/L	20.0	5.3	1		10/31/19 23:11		J(v3)
Acetonitrile	24.5 U	ug/L	40.0	24.5	1		10/31/19 23:11		
Benzene	0.10 U	ug/L	1.0	0.10	1		10/31/19 23:11		
Bromochloromethane	0.37 U	ug/L	1.0	0.37	1		10/31/19 23:11		
Bromodichloromethane	0.19 U	ug/L	0.60	0.19	1		10/31/19 23:11		
Bromoform	2.6 U	ug/L	3.0	2.6	1		10/31/19 23:11	75-25-2	
Bromomethane	4.0 U	ug/L	5.0	4.0	1		10/31/19 23:11	74-83-9	J(v2)
2-Butanone (MEK)	5.0 U	ug/L	10.0	5.0	1		10/31/19 23:11	78-93-3	
Carbon disulfide	1.2 I	ug/L	10.0	0.45	1		10/31/19 23:11	75-15-0	J(v2),V
Carbon tetrachloride	0.50 U	ug/L	3.0	0.50	1		10/31/19 23:11	56-23-5	
Chlorobenzene	0.50 U	ug/L	1.0	0.50	1		10/31/19 23:11	108-90-7	
Chloroethane	3.7 U	ug/L	10.0	3.7	1		10/31/19 23:11	75-00-3	
Chloroform	0.50 U	ug/L	1.0	0.50	1		10/31/19 23:11	67-66-3	
Chloromethane	0.97 U	ug/L	1.0	0.97	1		10/31/19 23:11	74-87-3	
1,2-Dibromo-3-chloropropane	1.9 U	ug/L	5.0	1.9	1		10/31/19 23:11	96-12-8	
Dibromochloromethane	0.45 U	ug/L	2.0	0.45	1		10/31/19 23:11	124-48-1	
1,2-Dibromoethane (EDB)	0.31 U	ug/L	1.0	0.31	1		10/31/19 23:11	106-93-4	

Project: JEA 5TH ST

Pace Project No.: 35508499

Sample: FS-TMW-1	Lab ID: 3	35508499001	Collected:	10/29/19	0 10:34	Received: 1	0/30/19 12:10	Matrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical M	lethod: EPA 8	260						
Dibromomethane	0.68 U	ug/L	2.0	0.68	1		10/31/19 23:1	1 74-95-3	
1,2-Dichlorobenzene	0.50 U	ug/L	1.0	0.50	1		10/31/19 23:1	1 95-50-1	
1,4-Dichlorobenzene	0.50 U	ug/L	1.0	0.50	1		10/31/19 23:1	1 106-46-7	
trans-1,4-Dichloro-2-butene	2.5 U	ug/L	10.0	2.5	1		10/31/19 23:1	1 110-57-6	
1,1-Dichloroethane	0.34 U	ug/L	1.0	0.34	1		10/31/19 23:1	1 75-34-3	
1,2-Dichloroethane	0.50 U	ug/L	1.0	0.50	1		10/31/19 23:1	1 107-06-2	
1,2-Dichloroethene (Total)	0.48 I	ug/L	1.0	0.27	1		10/31/19 23:1	1 540-59-0	N2
1,1-Dichloroethene	0.50 U	ug/L	1.0	0.50	1		10/31/19 23:1	1 75-35-4	
cis-1,2-Dichloroethene	0.50 U	ug/L	1.0	0.50	1		10/31/19 23:1	1 156-59-2	
trans-1,2-Dichloroethene	0.50 U	ug/L	1.0	0.50	1		10/31/19 23:1	1 156-60-5	
1,2-Dichloropropane	0.23 U	ug/L	1.0	0.23	1		10/31/19 23:1	1 78-87-5	
cis-1,3-Dichloropropene	0.17 U	ug/L	0.50	0.17	1		10/31/19 23:1	1 10061-01-5	
trans-1,3-Dichloropropene	0.17 U	ug/L	0.50	0.17	1		10/31/19 23:1	1 10061-02-6	
Ethylbenzene	0.50 U	ug/L	1.0	0.50	1		10/31/19 23:1	1 100-41-4	
2-Hexanone	0.85 U	ug/L	10.0	0.85	1		10/31/19 23:1		J(v2)
lodomethane	9.3 U	ug/L	10.0	9.3	1		10/31/19 23:1		-()
Isopropylbenzene (Cumene)	0.50 U	ug/L	1.0	0.50	1		10/31/19 23:1		
Methylene Chloride	2.0 U	ug/L	5.0	2.0	1		10/31/19 23:1		
4-Methyl-2-pentanone (MIBK)	0.32 U	ug/L	10.0	0.32	1		10/31/19 23:1		
Methyl-tert-butyl ether	0.50 U	ug/L	2.0	0.50	1			1 1634-04-4	
Styrene	0.26 U	ug/L	1.0	0.26	1		10/31/19 23:1		
1,1,1,2-Tetrachloroethane	0.32 U	ug/L	1.0	0.32	1		10/31/19 23:1		
1,1,2,2-Tetrachloroethane	0.20 U	ug/L	0.50	0.20	1		10/31/19 23:1		
Tetrachloroethene	0.50 U	ug/L	1.0	0.50	1		10/31/19 23:1		
Toluene	0.50 U	ug/L	1.0	0.50	1		10/31/19 23:1	-	
1,1,1-Trichloroethane	0.30 U	ug/L	1.0	0.30	1		10/31/19 23:1		
1,1,2-Trichloroethane	0.30 U	ug/L	1.0	0.30	1		10/31/19 23:1		
Trichloroethene	0.50 U	ug/L	1.0	0.50	1		10/31/19 23:1		
Trichlorofluoromethane	0.35 U	-	1.0	0.30	1		10/31/19 23:1		
	0.35 U 1.1 U	ug/L	2.0	0.35	1		10/31/19 23:1		
1,2,3-Trichloropropane	-	ug/L			1				
1,2,4-Trimethylbenzene	0.50 U	ug/L	1.0	0.50			10/31/19 23:1		
1,3,5-Trimethylbenzene	0.50 U	ug/L	1.0	0.50	1		10/31/19 23:1		1(0)
Vinyl acetate	0.19 U	ug/L	10.0	0.19	1		10/31/19 23:1		J(v2)
Vinyl chloride	0.50 U	ug/L	1.0	0.50	1		10/31/19 23:1		
Xylene (Total)	1.0 U	ug/L	5.0	1.0	1			11 1330-20-7	
m&p-Xylene	1.0 U	ug/L	4.0	1.0	1		10/31/19 23:1		
o-Xylene	0.50 U	ug/L	1.0	0.50	1		10/31/19 23:1	11 95-47-6	
Surrogates	05	0/	70 400		4		10/04/40 00 4	14 460 00 4	
4-Bromofluorobenzene (S)	95	%	70-130		1		10/31/19 23:1		
1,2-Dichloroethane-d4 (S)	103	%	70-130		1			11 17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		10/31/19 23:1	1 2037-26-5	

Project: JEA 5TH ST

Pace Project No.: 35508499

Sample: FS-TMW-2	Lab ID: 3	35508499002	Collected	: 10/29/19	12:24	Received: 10/	30/19 12:10 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8011 GCS EDB and DBCP	Analytical M	/lethod: EPA 8	011 Prepara	ation Metho	od: EPA	8011			
1,2-Dibromoethane (EDB)	0.0078 U	ug/L	0.010	0.0078	1	10/31/19 13:57	11/05/19 09:51	106-93-4	
FL-PRO Water, Low Volume	Analytical M	/lethod: FL-PR	O Preparat	ion Method	: EPA 3	510			
Petroleum Range Organics	0.78 I	mg/L	0.96	0.77	1	11/01/19 16:43	11/04/19 13:04		
<i>Surrogates</i> o-Terphenyl (S)	52	%	66-139		1	11/01/19 16:43	11/04/19 13:04	84-15-1	1p,
N-Pentatriacontane (S)	53	%	42-159		1	11/01/19 16:43	11/04/19 13:04	630-07-09	J(S5)
6010 MET ICP	Analytical N	/lethod: EPA 6	010 Prepara	ation Metho	od: EPA	3010			
Lead	8.4 I	ug/L	10.0	4.6	1	10/31/19 06:45	11/01/19 00:15	7439-92-1	
8270 MSSV PAHLV by SIM	Analytical M	/lethod: EPA 82	270 by SIM	Preparatio	n Metho	od: EPA 3510			
Acenaphthene	0.15 I	ug/L	0.50	0.040	1	11/01/19 10:23	11/02/19 20:56	83-32-9	
Acenaphthylene	0.030 U	ug/L	0.50	0.030	1	11/01/19 10:23	11/02/19 20:56	208-96-8	
Anthracene	0.043 U	ug/L	0.50	0.043	1	11/01/19 10:23	11/02/19 20:56	120-12-7	
Benzo(a)anthracene	0.055 U	ug/L	0.10	0.055	1	11/01/19 10:23	11/02/19 20:56	56-55-3	
Benzo(a)pyrene	0.12 U	ug/L	0.20	0.12	1	11/01/19 10:23	11/02/19 20:56	50-32-8	
Benzo(b)fluoranthene	0.027 U	ug/L	0.10	0.027	1	11/01/19 10:23	11/02/19 20:56	205-99-2	
Benzo(g,h,i)perylene	0.15 U	ug/L	0.50	0.15	1	11/01/19 10:23	11/02/19 20:56		
Benzo(k)fluoranthene	0.16 U	ug/L	0.50	0.16	1	11/01/19 10:23	11/02/19 20:56	-	
Chrysene	0.026 U	ug/L	0.50	0.026	1	11/01/19 10:23	11/02/19 20:56		
Dibenz(a,h)anthracene	0.13 U	ug/L	0.15	0.13	1	11/01/19 10:23	11/02/19 20:56		
Fluoranthene	0.018 U	ug/L	0.50	0.018	1	11/01/19 10:23	11/02/19 20:56		
Fluorene	0.15 I	ug/L	0.50	0.018	1	11/01/19 10:23	11/02/19 20:56		
	0.12 U	-	0.30	0.088	1	11/01/19 10:23	11/02/19 20:56		
Indeno(1,2,3-cd)pyrene		ug/L		0.12					
1-Methylnaphthalene	12.8	ug/L	2.0		1	11/01/19 10:23	11/02/19 20:56		
2-Methylnaphthalene	8.4	ug/L	2.0	0.68	1	11/01/19 10:23	11/02/19 20:56		
Naphthalene	2.5	ug/L	2.0	0.29	1	11/01/19 10:23	11/02/19 20:56		
Phenanthrene	0.16 U	ug/L	0.50	0.16	1	11/01/19 10:23	11/02/19 20:56		
Pyrene	0.032 U	ug/L	0.50	0.032	1	11/01/19 10:23	11/02/19 20:56	129-00-0	
Surrogates	77	%	38-92		1	11/01/19 10:23	11/02/19 20:56	221 60 9	
2-Fluorobiphenyl (S)					1				
p-Terphenyl-d14 (S)	80	%	54-112		1	11/01/19 10:23	11/02/19 20:56	1718-51-0	
8260 MSV		Aethod: EPA 8							
Benzene	1.2	ug/L	1.0	0.10	1		11/04/19 07:41		
Bromodichloromethane	0.19 U	ug/L	0.60	0.19	1		11/04/19 07:41		
Bromoform	2.6 U	ug/L	3.0	2.6	1		11/04/19 07:41		
Bromomethane	4.0 U	ug/L	5.0	4.0	1		11/04/19 07:41		J(v2)
Carbon tetrachloride	0.50 U	ug/L	3.0	0.50	1		11/04/19 07:41		
Chlorobenzene	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:41	108-90-7	
Chloroethane	3.7 U	ug/L	10.0	3.7	1		11/04/19 07:41	75-00-3	
2-Chloroethylvinyl ether	1.4 U	ug/L	40.0	1.4	1		11/04/19 07:41	110-75-8	J(v2),c2
Chloroform	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:41	67-66-3	
Chloromethane	0.97 U	ug/L	1.0	0.97	1		11/04/19 07:41	74-87-3	J(v2)

Project: JEA 5TH ST

Pace Project No.: 35508499

Sample: FS-TMW-2	Lab ID:	35508499002	Collecte	d: 10/29/19	9 12:24	Received: 10	/30/19 12:10 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
Dibromochloromethane	0.45 U	ug/L	2.0	0.45	1		11/04/19 07:41	124-48-1	
1,2-Dichlorobenzene	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:41	95-50-1	
1,3-Dichlorobenzene	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:41	541-73-1	
1,4-Dichlorobenzene	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:41	106-46-7	
1,1-Dichloroethane	0.34 U	ug/L	1.0	0.34	1		11/04/19 07:41	75-34-3	
1,2-Dichloroethane	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:41	107-06-2	
1,1-Dichloroethene	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:41	75-35-4	
cis-1,2-Dichloroethene	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:41	156-59-2	
trans-1,2-Dichloroethene	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:41	156-60-5	
1,2-Dichloropropane	0.23 U	ug/L	1.0	0.23	1		11/04/19 07:41	78-87-5	
cis-1,3-Dichloropropene	0.17 U	ug/L	0.50	0.17	1		11/04/19 07:41	10061-01-5	
trans-1,3-Dichloropropene	0.17 U	ug/L	0.50	0.17	1		11/04/19 07:41	10061-02-6	
Ethylbenzene	1.6	ug/L	1.0	0.50	1		11/04/19 07:41	100-41-4	
Methylene Chloride	2.0 U	ug/L	5.0	2.0	1		11/04/19 07:41	75-09-2	
Methyl-tert-butyl ether	1.4 I	ug/L	2.0	0.50	1		11/04/19 07:41	1634-04-4	
1,1,2,2-Tetrachloroethane	0.20 U	ug/L	0.50	0.20	1		11/04/19 07:41	79-34-5	
Tetrachloroethene	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:41	127-18-4	
Toluene	0.56 I	ug/L	1.0	0.50	1		11/04/19 07:41	108-88-3	
1,2,4-Trichlorobenzene	0.32 U	ug/L	1.0	0.32	1		11/04/19 07:41	120-82-1	J(v2)
1,1,1-Trichloroethane	0.30 U	ug/L	1.0	0.30	1		11/04/19 07:41	71-55-6	
1,1,2-Trichloroethane	0.30 U	ug/L	1.0	0.30	1		11/04/19 07:41	79-00-5	
Trichloroethene	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:41	79-01-6	
Vinyl chloride	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:41	75-01-4	
Xylene (Total)	1.0 U	ug/L	5.0	1.0	1		11/04/19 07:41	1330-20-7	
Surrogates		-							
4-Bromofluorobenzene (S)	97	%	70-130		1		11/04/19 07:41	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130		1		11/04/19 07:41	17060-07-0	
Toluene-d8 (S)	101	%	70-130		1		11/04/19 07:41	2037-26-5	

Project: JEA 5TH ST Pace Project No.:

Lead

35508499

QC Batch: 583131 QC Batch Method: EPA 3010		Analysis M Analysis De		EPA 6010 6010 MET				
	9001, 35508499002							
METHOD BLANK: 3170474		Matrix	x: Water					
Associated Lab Samples: 3550849	9001, 35508499002							
		Blank	Reportin	g				
Parameter	Units	Result	Limit	MDL		Analyze	ed Qu	ualifiers
Arsenic	ug/L	7.1 L	j	0.0	7.1	0/31/19 2	23:14	
Cadmium	ug/L	0.33 L	J	1.0	0.33	0/31/19 2	23:14	
Chromium	ug/L	1.7 L	J	5.0	1.7 <i>°</i>	0/31/19 2	23:14	
Lead	ug/L	4.6 L	J	0.0	4.6 ´	0/31/19 2	23:14	
LABORATORY CONTROL SAMPLE:	3170475							
		Spike	LCS	LCS	% F	Rec		
Parameter	Units	Conc.	Result	% Rec	Lin	nits	Qualifiers	
Arsenic	ug/L	250	248	99		80-120		_
Cadmium	ug/L	25	25.3	101		80-120		
Chromium	ug/L	250	254	101		80-120		

MATRIX SPIKE & MATRIX S	PIKE DUPL	ICATE: 3170	476		3170477							
Parameter	Units	35508355001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Arsenic	ug/L	7.1 U	250	250	247	250	99	100	75-125	1	20	
Cadmium	ug/L	0.33 U	25	25	24.8	25.4	99	102	75-125	3	20	
Chromium	ug/L	2.7 I	250	250	254	260	100	103	75-125	2	20	
Lead	ug/L	4.6 U	250	250	259	265	103	106	75-125	2	20	

262

105

80-120

250

ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: JEA 5TH ST

Project: JEASTHST						
Pace Project No.: 35508499						
QC Batch: 583339		Analysis Meth	nod: EPA	8260		
QC Batch Method: EPA 8260		Analysis Des	cription: 826	MSV		
Associated Lab Samples: 355084	499001					
METHOD BLANK: 3171193		Matrix:	Water			
Associated Lab Samples: 35508	499001					
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	0.32 U	1.0	0.32	10/31/19 12:45	
1,1,1-Trichloroethane	ug/L	0.30 U	1.0	0.30	10/31/19 12:45	
1,1,2,2-Tetrachloroethane	ug/L	0.20 U	0.50	0.20	10/31/19 12:45	
1,1,2-Trichloroethane	ug/L	0.30 U	1.0	0.30	10/31/19 12:45	
1,1-Dichloroethane	ug/L	0.34 U	1.0	0.34	10/31/19 12:45	
1,1-Dichloroethene	ug/L	0.50 U	1.0	0.50	10/31/19 12:45	
1,2,3-Trichloropropane	ug/L	1.1 U	2.0	1.1	10/31/19 12:45	
1,2,4-Trimethylbenzene	ug/L	0.50 U	1.0	0.50	10/31/19 12:45	
1,2-Dibromo-3-chloropropane	ug/L	1.9 U	5.0	1.9	10/31/19 12:45	
1,2-Dibromoethane (EDB)	ug/L	0.31 U	1.0	0.31	10/31/19 12:45	
1,2-Dichlorobenzene	ug/L	0.50 U	1.0	0.50	10/31/19 12:45	
1,2-Dichloroethane	ug/L	0.50 U	1.0	0.50	10/31/19 12:45	
1,2-Dichloroethene (Total)	ug/L	0.27 U	1.0	0.27	10/31/19 12:45	N2
1 0 D' 1 1						

	~g/ _	0.00 0	1.0	0.00	10/01/10 12:10	
1,2-Dichloroethane	ug/L	0.50 U	1.0	0.50	10/31/19 12:45	
1,2-Dichloroethene (Total)	ug/L	0.27 U	1.0	0.27	10/31/19 12:45	N2
1,2-Dichloropropane	ug/L	0.23 U	1.0	0.23	10/31/19 12:45	
1,3,5-Trimethylbenzene	ug/L	0.50 U	1.0	0.50	10/31/19 12:45	
1,4-Dichlorobenzene	ug/L	0.50 U	1.0	0.50	10/31/19 12:45	
2-Butanone (MEK)	ug/L	5.0 U	10.0	5.0	10/31/19 12:45	
2-Hexanone	ug/L	0.85 U	10.0	0.85	10/31/19 12:45	J(v2)
4-Methyl-2-pentanone (MIBK)	ug/L	0.32 U	10.0	0.32	10/31/19 12:45	
Acetone	ug/L	5.3 U	20.0	5.3	10/31/19 12:45	J(v3)
Acetonitrile	ug/L	24.5 U	40.0	24.5	10/31/19 12:45	
Benzene	ug/L	0.10 U	1.0	0.10	10/31/19 12:45	
Bromochloromethane	ug/L	0.37 U	1.0	0.37	10/31/19 12:45	
Bromodichloromethane	ug/L	0.19 U	0.60	0.19	10/31/19 12:45	
Bromoform	ug/L	2.6 U	3.0	2.6	10/31/19 12:45	
Bromomethane	ug/L	4.0 U	5.0	4.0	10/31/19 12:45	J(v2)
Carbon disulfide	ug/L	1.7 I	10.0	0.45	10/31/19 12:45	J(v3)
Carbon tetrachloride	ug/L	0.50 U	3.0	0.50	10/31/19 12:45	
Chlorobenzene	ug/L	0.50 U	1.0	0.50	10/31/19 12:45	
Chloroethane	ug/L	3.7 U	10.0	3.7	10/31/19 12:45	
Chloroform	ug/L	0.50 U	1.0	0.50	10/31/19 12:45	
Chloromethane	ug/L	0.97 U	1.0	0.97	10/31/19 12:45	
cis-1,2-Dichloroethene	ug/L	0.50 U	1.0	0.50	10/31/19 12:45	
cis-1,3-Dichloropropene	ug/L	0.17 U	0.50	0.17	10/31/19 12:45	
Dibromochloromethane	ug/L	0.45 U	2.0	0.45	10/31/19 12:45	
Dibromomethane	ug/L	0.68 U	2.0	0.68	10/31/19 12:45	
Ethylbenzene	ug/L	0.50 U	1.0	0.50	10/31/19 12:45	
lodomethane	ug/L	9.3 U	10.0	9.3	10/31/19 12:45	
Isopropylbenzene (Cumene)	ug/L	0.50 U	1.0	0.50	10/31/19 12:45	
m&p-Xylene	ug/L	1.0 U	4.0	1.0	10/31/19 12:45	
Methyl-tert-butyl ether	ug/L	0.50 U	2.0	0.50	10/31/19 12:45	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Matrix: Water

Project: JEA 5TH ST Pace Project No.: 35508499

METHOD BLANK: 3171193

Associated Lab Samples: 35508499001

Blank Reporting Parameter Units Result Limit MDL Analyzed Qualifiers Methylene Chloride 2.0 U ug/L 5.0 2.0 10/31/19 12:45 o-Xylene ug/L 0.50 U 1.0 0.50 10/31/19 12:45 Styrene 0.26 U 1.0 0.26 10/31/19 12:45 ug/L Tetrachloroethene ug/L 0.50 U 1.0 0.50 10/31/19 12:45 Toluene 0.50 U 1.0 0.50 10/31/19 12:45 ug/L trans-1,2-Dichloroethene ug/L 0.50 U 1.0 0.50 10/31/19 12:45 trans-1,3-Dichloropropene ug/L 0.17 U 0.50 0.17 10/31/19 12:45 trans-1,4-Dichloro-2-butene ug/L 2.5 U 10.0 2.5 10/31/19 12:45 Trichloroethene ug/L 0.50 U 1.0 0.50 10/31/19 12:45 Trichlorofluoromethane 0.35 U 1.0 0.35 10/31/19 12:45 ug/L 0.19 U Vinyl acetate ug/L 10.0 0.19 10/31/19 12:45 J(v2) 0.50 U Vinyl chloride ug/L 1.0 0.50 10/31/19 12:45 Xylene (Total) ug/L 1.0 U 5.0 1.0 10/31/19 12:45 1,2-Dichloroethane-d4 (S) 70-130 % 99 10/31/19 12:45 4-Bromofluorobenzene (S) % 95 70-130 10/31/19 12:45 Toluene-d8 (S) % 99 70-130 10/31/19 12:45

LABORATORY CONTROL SAMPLE: 3171194

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	20	19.0	95	70-130	
1,1,1-Trichloroethane	ug/L	20	18.0	90	70-130	
1,1,2,2-Tetrachloroethane	ug/L	20	19.4	97	68-125	
1,1,2-Trichloroethane	ug/L	20	18.6	93	70-130	
1,1-Dichloroethane	ug/L	20	18.6	93	70-130	
1,1-Dichloroethene	ug/L	20	16.8	84	66-133	
I,2,3-Trichloropropane	ug/L	20	18.5	93	62-127	
I,2,4-Trimethylbenzene	ug/L	20	18.6	93	70-130	
,2-Dibromo-3-chloropropane	ug/L	20	17.0	85	45-137	
2-Dibromoethane (EDB)	ug/L	20	19.4	97	70-130	
,2-Dichlorobenzene	ug/L	20	18.5	92	70-130	
,2-Dichloroethane	ug/L	20	17.0	85	70-130	
,2-Dichloroethene (Total)	ug/L	40	33.2	83	70-130	N2
2-Dichloropropane	ug/L	20	18.6	93	70-130	
3,5-Trimethylbenzene	ug/L	20	18.2	91	70-130	
4-Dichlorobenzene	ug/L	20	17.8	89	70-130	
-Butanone (MEK)	ug/L	40	34.2	85	47-143	
-Hexanone	ug/L	40	34.9	87	48-145	J(v3)
-Methyl-2-pentanone (MIBK)	ug/L	40	36.3	91	57-132	
cetone	ug/L	40	29.5	74	46-148	
cetonitrile	ug/L	200	163	82	33-175	
enzene	ug/L	20	18.3	91	70-130	
Bromochloromethane	ug/L	20	19.0	95	70-130	
Bromodichloromethane	ug/L	20	18.8	94	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: JEA 5TH ST Pace Project No.: 35508499

LABORATORY CONTROL SAMPLE: 3171194

_		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc	Result	% Rec	Limits	Qualifiers
Bromoform	ug/L	20	16.5	82	49-126	
Bromomethane	ug/L	20	13.9	69	10-165	J(v3)
Carbon disulfide	ug/L	20	13.4	67	60-141	J(v3)
Carbon tetrachloride	ug/L	20	16.2	81	63-126	
Chlorobenzene	ug/L	20	17.6	88	70-130	
Chloroethane	ug/L	20	16.9	84	71-142	
hloroform	ug/L	20	18.1	91	70-130	
nloromethane	ug/L	20	13.6	68	40-140	
s-1,2-Dichloroethene	ug/L	20	17.2	86	70-130	
s-1,3-Dichloropropene	ug/L	20	17.7	89	70-130	
bromochloromethane	ug/L	20	16.8	84	62-118	
bromomethane	ug/L	20	17.9	89	70-130	
hylbenzene	ug/L	20	17.9	89	70-130	
lomethane	ug/L	40	36.3	91	10-164	
propylbenzene (Cumene)	ug/L	20	18.6	93	70-130	
p-Xylene	ug/L	40	36.7	92	70-130	
thyl-tert-butyl ether	ug/L	20	17.1	85	64-124	
thylene Chloride	ug/L	20	18.6	93	65-136	
ylene	ug/L	20	18.2	91	70-130	
rene	ug/L	20	19.4	97	70-130	
rachloroethene	ug/L	20	16.4	82	64-134	
uene	ug/L	20	18.4	92	70-130	
ns-1,2-Dichloroethene	ug/L	20	16.0	80	68-127	
ns-1,3-Dichloropropene	ug/L	20	17.6	88	65-121	
ns-1,4-Dichloro-2-butene	ug/L	20	16.7	83	42-129	
chloroethene	ug/L	20	17.1	85	70-130	
chlorofluoromethane	ug/L	20	14.8	74	65-135	
nyl acetate	ug/L	20	13.6	68	60-144	J(v3)
yl chloride	ug/L	20	15.4	77	68-131	
lene (Total)	ug/L	60	54.9	92	70-130	
2-Dichloroethane-d4 (S)	%			98	70-130	
Bromofluorobenzene (S)	%			100	70-130	
luene-d8 (S)	%			100	70-130	

MATRIX SPIKE SAMPLE:	3171238						
		35508425002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	0.50 U	20	19.5	97	70-130	
1,1,1-Trichloroethane	ug/L	0.50 U	20	21.6	108	70-130	
1,1,2,2-Tetrachloroethane	ug/L	0.12 U	20	19.1	96	68-125	
1,1,2-Trichloroethane	ug/L	0.50 U	20	18.8	94	70-130	
1,1-Dichloroethane	ug/L	0.50 U	20	20.5	103	70-130	
1,1-Dichloroethene	ug/L	0.50 U	20	21.4	107	66-133	
1,2,3-Trichloropropane	ug/L	0.59 U	20	15.7	78	62-127	J(v3)
1,2,4-Trimethylbenzene	ug/L	0.50 U	20	20.4	102	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: JEA 5TH ST 35508499

Pace Project No.:

MATRIX SPIKE SAMPLE:	3171238					
Parameter	Units	35508425002 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
1,2-Dibromo-3-chloropropane	ug/L	1.0 U	20	16.6	83	45-137
1,2-Dibromoethane (EDB)	ug/L	0.50 U	20	18.9	95	70-130
1,2-Dichlorobenzene	ug/L	0.50 U	20	19.3	97	70-130
1,2-Dichloroethane	ug/L	0.50 U	20	17.0	84	70-130
1,2-Dichloroethene (Total)	ug/L	0.50 U	40	37.1	93	70-130 N2
1,2-Dichloropropane	ug/L	0.50 U	20	19.6	98	70-130
1,3,5-Trimethylbenzene	ug/L	0.50 U	20	20.4	102	70-130
1,4-Dichlorobenzene	ug/L	0.50 U	20	18.9	94	70-130
2-Butanone (MEK)	ug/L	5.0 U	40	31.2	78	47-143
2-Hexanone	ug/L	5.0 U	40	32.4	81	48-145
4-Methyl-2-pentanone (MIBK)	ug/L	5.0 U	40	34.2	85	57-132
Acetone	ug/L	10.0 U	40	26.6	63	46-148 J(v3)
Acetonitrile	ug/L	5.0 U	200	174	87	33-175 J(v3)
Benzene	ug/L	0.10 U	200	19.5	98	70-130
Bromochloromethane	ug/L	0.50 U	20	17.0	85	70-130
Bromodichloromethane	ug/L	0.27 U	20	19.7	99	70-130
Bromoform	ug/L	0.50 U	20	15.8	79	49-126 J(v3)
Bromomethane	ug/L	0.50 U	20	7.5	37	10-165 J(v3)
Carbon disulfide	ug/L	5.0 U	20	20.7	97	60-141
Carbon tetrachloride	ug/L	0.50 U	20	19.7	99	63-126
Chlorobenzene	ug/L	0.50 U	20	19.0	95	70-130
Chloroethane	ug/L	0.50 U	20	21.0	95 105	71-142
Chloroform	ug/L	0.50 U	20	19.3	96	70-130
Chloromethane	ug/L	0.62 U	20	16.4	90 82	40-140 J(v3)
cis-1,2-Dichloroethene	ug/L	0.50 U	20	18.7	94	70-130
cis-1,3-Dichloropropene	ug/L	0.25 U	20	17.2	86	70-130
Dibromochloromethane	-	0.26 U	20	16.4	82	62-118
Dibromomethane	ug/L	0.50 U	20	17.4	87	70-130
Ethylbenzene	ug/L ug/L	0.50 U	20 20	20.0	100	70-130
lodomethane	ug/∟ ug/L	0.50 U	20 40	20.0 16.8	42	10-164 J(v3)
Isopropylbenzene (Cumene)	ug/L	0.50 U	40 20	21.4	42 107	70-130
m&p-Xylene	ug/L	1.0 U	20 40	41.2	107	70-130
Methyl-tert-butyl ether	ug/L	0.50 U	40 20	16.8	84	64-124
Methylene Chloride	ug/L	2.5 U	20	10.8	96	65-136
o-Xylene	ug/L	0.50 U	20	19.3	99	70-130
Styrene	ug/L	0.50 U	20	20.4	102	70-130
Tetrachloroethene	ug/L	0.50 U	20	18.4	92	64-134
Toluene	ug/L	0.50 U	20	20.6	103	70-130
trans-1,2-Dichloroethene		0.50 U	20	18.4	92	68-127
trans-1,3-Dichloropropene	ug/L ug/L	0.25 U	20	17.4	92 87	65-121
trans-1,4-Dichloro-2-butene	ug/∟ ug/L	5.0 U	20	17.4	87	42-129
Trichloroethene	-	0.50 U	20 20	10.9	85 95	70-130
Trichlorofluoromethane	ug/L ug/L	0.50 U	20	21.1	95 105	65-135
Vinyl acetate	-	1.0 U	20 20	15.9	80	60-144
Vinyl acetate Vinyl chloride	ug/L ug/L	0.50 U	20 20	21.2	80 106	60-144 68-131
		1.0 U				70-130
Xylene (Total)	ug/L	1.0 0	60	61.0	102	
1,2-Dichloroethane-d4 (S)	%				98	70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEA 5TH ST 35508499

Pace Project No.:

MATRIX SPIKE SAMPLE:	3171238						
		35508425002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
4-Bromofluorobenzene (S)	%				99	70-130	
Toluene-d8 (S)	%				100	70-130	

SAMPLE DUPLICATE: 3171237						
		35508425001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	0.50 U	0.32 U		40	
1,1,1-Trichloroethane	ug/L	0.50 U	0.30 U		40	1
1,1,2,2-Tetrachloroethane	ug/L	0.12 U	0.20 U		40	1
1,1,2-Trichloroethane	ug/L	0.50 U	0.30 U		40	1
1,1-Dichloroethane	ug/L	0.50 U	0.34 U		40	1
1,1-Dichloroethene	ug/L	0.50 U	0.50 U		40	1
1,2,3-Trichloropropane	ug/L	0.59 U	1.1 U		40	1
1,2,4-Trimethylbenzene	ug/L	0.50 U	0.50 U		40	1
1,2-Dibromo-3-chloropropane	ug/L	1.0 U	1.9 U		40	1
1,2-Dibromoethane (EDB)	ug/L	0.50 U	0.31 U		40	1
1,2-Dichlorobenzene	ug/L	0.50 U	0.50 U		40	1
1,2-Dichloroethane	ug/L	0.50 U	0.50 U		40	1
1,2-Dichloroethene (Total)	ug/L	0.50 U	0.27 U		40	N2
1,2-Dichloropropane	ug/L	0.50 U	0.23 U		40	1
1,3,5-Trimethylbenzene	ug/L	0.50 U	0.50 U		40	1
1,4-Dichlorobenzene	ug/L	0.50 U	0.50 U		40	1
2-Butanone (MEK)	ug/L	5.0 U	5.0 U		40	1
2-Hexanone	ug/L	5.0 U	0.85 U		40	J(v2)
1-Methyl-2-pentanone (MIBK)	ug/L	5.0 U	0.32 U		40	
Acetone	ug/L	10.0 U	5.3 U		40	J(v3)
Acetonitrile	ug/L	5.0 U	24.5 U		40	
Benzene	ug/L	0.10 U	0.10 U		40	1
Bromochloromethane	ug/L	0.50 U	0.37 U		40	1
Bromodichloromethane	ug/L	0.27 U	0.19 U		40	1
Bromoform	ug/L	0.50 U	2.6 U		40	1
Bromomethane	ug/L	0.50 U	4.0 U		40	J(v2)
Carbon disulfide	ug/L	5.0 U	1.4 I		40	J(v3)
Carbon tetrachloride	ug/L	0.50 U	0.50 U		40	1
Chlorobenzene	ug/L	0.50 U	0.50 U		40	1
Chloroethane	ug/L	0.50 U	3.7 U		40	1
Chloroform	ug/L	0.50 U	0.50 U		40	1
Chloromethane	ug/L	0.62 U	0.97 U		40	1
cis-1,2-Dichloroethene	ug/L	0.50 U	0.50 U		40	1
cis-1,3-Dichloropropene	ug/L	0.25 U	0.17 U		40	1
Dibromochloromethane	ug/L	0.26 U	0.45 U		40	1
Dibromomethane	ug/L	0.50 U	0.68 U		40	1
Ethylbenzene	ug/L	0.50 U	0.50 U		40	1
Iodomethane	ug/L	0.50 U	9.3 U		40	1
Isopropylbenzene (Cumene)	ug/L	0.50 U	0.50 U		40	1
opropylbenzene (Cumene)	-	0.50 U			40	I

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: JEA 5TH ST Pace Project No.: 35508499

SAMPLE DUPLICATE: 3171237

		35508425001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
m&p-Xylene	ug/L	1.0 U	1.0 U		40)
Methyl-tert-butyl ether	ug/L	0.50 U	0.50 U		40)
Methylene Chloride	ug/L	2.5 U	2.0 U		40)
o-Xylene	ug/L	0.50 U	0.50 U		40)
Styrene	ug/L	0.50 U	0.26 U		40)
Tetrachloroethene	ug/L	0.50 U	0.50 U		40)
Toluene	ug/L	0.50 U	0.50 U		40)
trans-1,2-Dichloroethene	ug/L	0.50 U	0.50 U		40)
trans-1,3-Dichloropropene	ug/L	0.25 U	0.17 U		40)
trans-1,4-Dichloro-2-butene	ug/L	5.0 U	2.5 U		40)
Trichloroethene	ug/L	0.50 U	0.50 U		40)
Trichlorofluoromethane	ug/L	0.50 U	0.35 U		40)
Vinyl acetate	ug/L	1.0 U	0.19 U		40) J(v2)
Vinyl chloride	ug/L	0.50 U	0.50 U		40)
Xylene (Total)	ug/L	1.0 U	1.0 U		40)
1,2-Dichloroethane-d4 (S)	%	102	101		40)
4-Bromofluorobenzene (S)	%	92	93		40)
Toluene-d8 (S)	%	101	101		40)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: JEA 5TH	H ST					
Pace Project No.: 355084	99					
QC Batch: 583908		Analysis Meth	nod: EPA	8260		
QC Batch Method: EPA 8260		Analysis Deso) MSV		
		Analysis Dest	onption. 0200			
Associated Lab Samples:	35508499002					
METHOD BLANK: 3175041		Matrix:	Water			
Associated Lab Samples:	35508499002					
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	0.30 U	1.0	0.30	11/03/19 21:56	
1,1,2,2-Tetrachloroethane	ug/L	0.20 U	0.50	0.20	11/03/19 21:56	
1,1,2-Trichloroethane	ug/L	0.30 U	1.0	0.30	11/03/19 21:56	
1,1-Dichloroethane	ug/L	0.34 U	1.0	0.34	11/03/19 21:56	
1,1-Dichloroethene	ug/L	0.50 U	1.0	0.50	11/03/19 21:56	
1,2,4-Trichlorobenzene	ug/L	0.32 U	1.0	0.32	11/03/19 21:56	
1,2-Dichlorobenzene	ug/L	0.50 U	1.0	0.50	11/03/19 21:56	
1,2-Dichloroethane	ug/L	0.50 U	1.0	0.50	11/03/19 21:56	
1,2-Dichloropropane	ug/L	0.23 U	1.0	0.23	11/03/19 21:56	
1,3-Dichlorobenzene	ug/L	0.50 U	1.0	0.50	11/03/19 21:56	
1,4-Dichlorobenzene	ug/L	0.50 U	1.0	0.50	11/03/19 21:56	
2-Chloroethylvinyl ether	ug/L	1.4 U	40.0	1.4	11/03/19 21:56	J(v2)
Benzene	ug/L	0.10 U	1.0	0.10	11/03/19 21:56	()
Bromodichloromethane	ug/L	0.19 U	0.60	0.19	11/03/19 21:56	
Bromoform	ug/L	2.6 U	3.0	2.6	11/03/19 21:56	
Bromomethane	ug/L	4.0 U	5.0	4.0	11/03/19 21:56	J(v2)
Carbon tetrachloride	ug/L	0.50 U	3.0	0.50	11/03/19 21:56	
Chlorobenzene	ug/L	0.50 U	1.0	0.50	11/03/19 21:56	
Chloroethane	ug/L	3.7 U	10.0	3.7	11/03/19 21:56	
Chloroform	ug/L	0.50 U	1.0	0.50	11/03/19 21:56	
Chloromethane	ug/L	0.97 U	1.0	0.97	11/03/19 21:56	J(v2)
cis-1,2-Dichloroethene	ug/L	0.50 U	1.0	0.50	11/03/19 21:56	
cis-1,3-Dichloropropene	ug/L	0.17 U	0.50	0.17	11/03/19 21:56	
Dibromochloromethane	ug/L	0.45 U	2.0	0.45	11/03/19 21:56	
Ethylbenzene	ug/L	0.50 U	1.0	0.50	11/03/19 21:56	
Methyl-tert-butyl ether	ug/L	0.50 U	2.0	0.50	11/03/19 21:56	
Methylene Chloride	ug/L	2.0 U	5.0	2.0	11/03/19 21:56	
Tetrachloroethene	ug/L	0.50 U	1.0	0.50	11/03/19 21:56	
Toluene	ug/L	0.50 U	1.0	0.50	11/03/19 21:56	
trans-1,2-Dichloroethene	ug/L	0.50 U	1.0	0.50	11/03/19 21:56	
trans-1,3-Dichloropropene	ug/L	0.17 U	0.50	0.17	11/03/19 21:56	
Trichloroethene	ug/L	0.50 U	1.0	0.50	11/03/19 21:56	
Vinyl chloride	ug/L	0.50 U	1.0	0.50	11/03/19 21:56	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

5.0 70-130

70-130

70-130

1.0 U

102

100

104

ug/L

%

%

%

1.0 11/03/19 21:56

11/03/19 21:56

11/03/19 21:56

11/03/19 21:56

REPORT OF LABORATORY ANALYSIS

Xylene (Total)

Toluene-d8 (S)

1,2-Dichloroethane-d4 (S)

4-Bromofluorobenzene (S)

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: JEA 5TH ST Pace Project No.: 35508499

LABORATORY CONTROL SAMPLE: 3175042

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	20	20.7	103	70-130	
1,1,2,2-Tetrachloroethane	ug/L	20	18.8	94	68-125	
1,1,2-Trichloroethane	ug/L	20	19.2	96	70-130	
,1-Dichloroethane	ug/L	20	19.7	99	70-130	
,1-Dichloroethene	ug/L	20	19.3	96	66-133	
,2,4-Trichlorobenzene	ug/L	20	16.7	84	63-124	J(v3)
2-Dichlorobenzene	ug/L	20	19.1	96	70-130	
2-Dichloroethane	ug/L	20	16.7	84	70-130	
2-Dichloropropane	ug/L	20	19.2	96	70-130	
3-Dichlorobenzene	ug/L	20	19.3	96	70-130	
4-Dichlorobenzene	ug/L	20	18.8	94	70-130	
Chloroethylvinyl ether	ug/L	20	15.7 I	79	41-140	J(v3)
enzene	ug/L	20	19.5	98	70-130	
romodichloromethane	ug/L	20	19.6	98	70-130	
romoform	ug/L	20	17.3	86	49-126	
omomethane	ug/L	20	4.0 U	13	10-165	J(v3)
arbon tetrachloride	ug/L	20	19.5	98	63-126	
lorobenzene	ug/L	20	19.1	95	70-130	
lloroethane	ug/L	20	20.6	103	71-142	
loroform	ug/L	20	19.2	96	70-130	
loromethane	ug/L	20	14.6	73	40-140	J(v3)
-1,2-Dichloroethene	ug/L	20	18.3	92	70-130	
-1,3-Dichloropropene	ug/L	20	18.1	91	70-130	
promochloromethane	ug/L	20	17.8	89	62-118	
ylbenzene	ug/L	20	19.8	99	70-130	
ethyl-tert-butyl ether	ug/L	20	17.2	86	64-124	
ethylene Chloride	ug/L	20	18.3	92	65-136	
trachloroethene	ug/L	20	19.5	98	64-134	
luene	ug/L	20	20.1	101	70-130	
ans-1,2-Dichloroethene	ug/L	20	17.3	86	68-127	
Ins-1,3-Dichloropropene	ug/L	20	18.1	90	65-121	
chloroethene	ug/L	20	18.8	94	70-130	
nyl chloride	ug/L	20	18.8	94	68-131	
/lene (Total)	ug/L	60	60.3	101	70-130	
2-Dichloroethane-d4 (S)	%			96	70-130	
Bromofluorobenzene (S)	%			103	70-130	
bluene-d8 (S)	%			99	70-130	

MATRIX SPIKE SAMPLE

3175044

WATKIN STIKE SAWITEE.	5175044	35508182003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	0.30 U	20	19.7	99	70-130	
1,1,2,2-Tetrachloroethane	ug/L	0.20 U	20	19.3	96	68-125	
1,1,2-Trichloroethane	ug/L	0.30 U	20	18.4	92	70-130	
1,1-Dichloroethane	ug/L	0.34 U	20	18.5	93	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: JEA 5TH ST Pace Project No.: 35508499

MATRIX SPIKE SAMPLE:	3175044						
		35508182003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1-Dichloroethene	ug/L	0.50 U	20	18.9	94	66-133	
1,2,4-Trichlorobenzene	ug/L	0.32 U	20	14.8	74	63-124	J(v3)
1,2-Dichlorobenzene	ug/L	0.50 U	20	17.6	88	70-130	
1,2-Dichloroethane	ug/L	0.50 U	20	16.0	80	70-130	
1,2-Dichloropropane	ug/L	0.23 U	20	17.9	89	70-130	
1,3-Dichlorobenzene	ug/L	0.50 U	20	17.7	88	70-130	
1,4-Dichlorobenzene	ug/L	0.50 U	20	17.4	87	70-130	
2-Chloroethylvinyl ether	ug/L	1.4 U	20	1.4 U	0	41-140	J(M1),J(v2)
Benzene	ug/L	0.10 U	20	18.1	91	70-130	
Bromodichloromethane	ug/L	0.19 U	20	18.0	90	70-130	
Bromoform	ug/L	2.6 U	20	15.4	77	49-126	
Bromomethane	ug/L	4.0 U	20	4.0 U	5	10-165	J(M1),J(v2)
Carbon tetrachloride	ug/L	0.50 U	20	18.7	93	63-126	
Chlorobenzene	ug/L	0.50 U	20	17.4	87	70-130	
Chloroethane	ug/L	3.7 U	20	19.4	97	71-142	
Chloroform	ug/L	0.50 U	20	17.6	88	70-130	
Chloromethane	ug/L	0.97 U	20	12.9	65	40-140	J(v3)
cis-1,2-Dichloroethene	ug/L	0.50 U	20	17.0	85	70-130	
cis-1,3-Dichloropropene	ug/L	0.17 U	20	15.1	75	70-130	
Dibromochloromethane	ug/L	0.45 U	20	16.1	81	62-118	
Ethylbenzene	ug/L	0.50 U	20	18.2	91	70-130	
Methyl-tert-butyl ether	ug/L	0.50 U	20	16.1	80	64-124	
Methylene Chloride	ug/L	2.0 U	20	17.3	86	65-136	
Tetrachloroethene	ug/L	0.50 U	20	17.2	86	64-134	
Toluene	ug/L	0.50 U	20	19.2	96	70-130	
trans-1,2-Dichloroethene	ug/L	0.50 U	20	16.4	82	68-127	
trans-1,3-Dichloropropene	ug/L	0.17 U	20	16.2	81	65-121	
Trichloroethene	ug/L	0.50 U	20	17.2	86	70-130	
Vinyl chloride	ug/L	0.50 U	20	15.7	79	68-131	
Xylene (Total)	ug/L	1.0 U	60	54.7	91	70-130	
1,2-Dichloroethane-d4 (S)	%				100	70-130	
4-Bromofluorobenzene (S)	%				97	70-130	
Toluene-d8 (S)	%				98	70-130	

SAMPLE DUPLICATE: 3175043

Parameter	Units	35508182002 Result	Dup Result	RPD	Max RPD	Qualifiers
1,1,1-Trichloroethane	ug/L	0.30 U	0.30 U		40	
1,1,2,2-Tetrachloroethane	ug/L	0.20 U	0.20 U		40	1
1,1,2-Trichloroethane	ug/L	0.30 U	0.30 U		40	1
1,1-Dichloroethane	ug/L	0.34 U	0.34 U		40	1
1,1-Dichloroethene	ug/L	0.50 U	0.50 U		40	1
1,2,4-Trichlorobenzene	ug/L	0.32 U	0.32 U		40	J(v2)
1,2-Dichlorobenzene	ug/L	0.50 U	0.50 U		40	1
1,2-Dichloroethane	ug/L	0.50 U	0.50 U		40	1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: JEA 5TH ST Pace Project No.: 35508499

SAMPLE DUPLICATE: 3175043

		35508182002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dichloropropane	ug/L	0.23 U	0.23 U		4	0
1,3-Dichlorobenzene	ug/L	0.50 U	0.50 U		4	0
1,4-Dichlorobenzene	ug/L	0.50 U	0.50 U		4	0
2-Chloroethylvinyl ether	ug/L	1.4 U	1.4 U		4	0 J(v2)
Benzene	ug/L	0.10 U	0.10 U		4	0
Bromodichloromethane	ug/L	0.19 U	0.19 U		4	0
Bromoform	ug/L	2.6 U	2.6 U		4	0
Bromomethane	ug/L	4.0 U	4.0 U		4	0 J(v2)
Carbon tetrachloride	ug/L	0.50 U	0.50 U		4	0
Chlorobenzene	ug/L	0.50 U	0.50 U		4	0
Chloroethane	ug/L	3.7 U	3.7 U		4	0
Chloroform	ug/L	0.50 U	0.50 U		4	0
Chloromethane	ug/L	0.97 U	0.97 U		4	0 J(v2)
cis-1,2-Dichloroethene	ug/L	0.50 U	0.50 U		4	0
cis-1,3-Dichloropropene	ug/L	0.17 U	0.17 U		4	0
Dibromochloromethane	ug/L	0.45 U	0.45 U		4	D
Ethylbenzene	ug/L	0.50 U	0.50 U		4	0
Methyl-tert-butyl ether	ug/L	0.50 U	0.50 U		4	0
Methylene Chloride	ug/L	2.0 U	2.0 U		4	D
Tetrachloroethene	ug/L	0.50 U	0.50 U		4	0
Toluene	ug/L	0.50 U	0.50 U		4	0
trans-1,2-Dichloroethene	ug/L	0.50 U	0.50 U		4	0
trans-1,3-Dichloropropene	ug/L	0.17 U	0.17 U		4	0
Trichloroethene	ug/L	0.50 U	0.50 U		4	D
Vinyl chloride	ug/L	0.50 U	0.50 U		4	0
Xylene (Total)	ug/L	1.0 U	1.0 U		4	0
1,2-Dichloroethane-d4 (S)	%	103	100		4	0
4-Bromofluorobenzene (S)	%	94	96		4	0
Toluene-d8 (S)	%	102	101		4	0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	EA 5TH ST											
Pace Project No.: 3	5508499											
QC Batch:	583130		Analy	ysis Metho	d: E	EPA 8011						
QC Batch Method:	EPA 8011		Analy	ysis Descri	ption: 8	3011 EDB [DBCP					
Associated Lab Samp	les: 35508499	002										
METHOD BLANK: 3	170470			Matrix: W	/ater							
Associated Lab Samp	les: 35508499	002										
			Blar	nk	Reporting							
Parame	ter	Units	Res	ult	Limit	MD	L	Analyzed	d Q	ualifiers		
1,2-Dibromoethane (E	DB)	ug/L	0.0	075 U	0.01	0 (0.0075	11/05/19 05	5:35			
LABORATORY CONT	ROL SAMPLE:	3170471										
			Spike	LC	S	LCS		Rec				
Parame	ter	Units	Conc.	Res	sult	% Rec	Li	imits	Qualifiers			
1,2-Dibromoethane (E	DB)	ug/L	0.2	25	0.25	10	2	60-140				
MATRIX SPIKE & MA	TRIX SPIKE DUF	LICATE: 3170	472		3170473							
			MS	MSD								
		0550004004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
_		35508201001	•	•	-	-	- · · -					- ·
Parameter	Units		Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Matrix: Water

Project: JEA 5TH ST

Pace Project No.: 35508499

QC Batch: 583454 Analysis Method: EPA 8270 by SIM QC Batch Method: EPA 3510 Analysis Description: 8270 Water PAHLV by SIM MSSV Associated Lab Samples: 35508499001, 35508499002

METHOD BLANK: 3172127

Associated Lab Samples: 35508499001, 35508499002

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
-Methylnaphthalene	ug/L	0.19 U	2.0	0.19	11/02/19 14:18	
-Methylnaphthalene	ug/L	0.68 U	2.0	0.68	11/02/19 14:18	
cenaphthene	ug/L	0.040 U	0.50	0.040	11/02/19 14:18	
cenaphthylene	ug/L	0.030 U	0.50	0.030	11/02/19 14:18	
Inthracene	ug/L	0.043 U	0.50	0.043	11/02/19 14:18	
Senzo(a)anthracene	ug/L	0.055 U	0.10	0.055	11/02/19 14:18	
Senzo(a)pyrene	ug/L	0.12 U	0.20	0.12	11/02/19 14:18	
enzo(b)fluoranthene	ug/L	0.027 U	0.10	0.027	11/02/19 14:18	
enzo(g,h,i)perylene	ug/L	0.15 U	0.50	0.15	11/02/19 14:18	
enzo(k)fluoranthene	ug/L	0.16 U	0.50	0.16	11/02/19 14:18	
Chrysene	ug/L	0.026 U	0.50	0.026	11/02/19 14:18	
Dibenz(a,h)anthracene	ug/L	0.13 U	0.15	0.13	11/02/19 14:18	
luoranthene	ug/L	0.018 U	0.50	0.018	11/02/19 14:18	
luorene	ug/L	0.088 U	0.50	0.088	11/02/19 14:18	
ndeno(1,2,3-cd)pyrene	ug/L	0.12 U	0.15	0.12	11/02/19 14:18	
laphthalene	ug/L	0.29 U	2.0	0.29	11/02/19 14:18	
henanthrene	ug/L	0.16 U	0.50	0.16	11/02/19 14:18	
Pyrene	ug/L	0.032 U	0.50	0.032	11/02/19 14:18	
-Fluorobiphenyl (S)	%	68	38-92		11/02/19 14:18	
-Terphenyl-d14 (S)	%	79	54-112		11/02/19 14:18	

LABORATORY CONTROL SAMPLE: 3172128

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1-Methylnaphthalene	ug/L		3.6	72	40-96	
2-Methylnaphthalene	ug/L	5	3.5	70	40-94	
Acenaphthene	ug/L	5	4.0	80	42-96	
Acenaphthylene	ug/L	5	3.7	73	39-90	
Anthracene	ug/L	5	4.3	86	46-109	
Benzo(a)anthracene	ug/L	5	4.5	90	50-116	
Benzo(a)pyrene	ug/L	5	4.6	92	48-117	
Benzo(b)fluoranthene	ug/L	5	4.7	94	51-124	
Benzo(g,h,i)perylene	ug/L	5	4.7	93	47-121	
Benzo(k)fluoranthene	ug/L	5	4.8	96	50-125	
Chrysene	ug/L	5	5.0	99	53-122	
Dibenz(a,h)anthracene	ug/L	5	4.6	92	45-123	
Fluoranthene	ug/L	5	4.4	87	52-119	
Fluorene	ug/L	5	3.8	77	44-100	
ndeno(1,2,3-cd)pyrene	ug/L	5	4.6	92	46-121	
Naphthalene	ug/L	5	3.6	72	40-91	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: JEA 5TH ST Pace Project No.: 35508499

LABORATORY CONTROL SAMPLE:	3172128					
	l la ita	Spike	LCS	LCS	% Rec	Qualifiers
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Phenanthrene	ug/L	5	4.5	89	47-111	
Pyrene	ug/L	5	4.4	89	51-120	
2-Fluorobiphenyl (S)	%			65	38-92	
p-Terphenyl-d14 (S)	%			76	54-112	

MATRIX SPIKE SAMPLE:	3172685						
		35508425001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/L	0.19 U	5	3.5	69	40-96	
2-Methylnaphthalene	ug/L	0.68 U	5	3.4	67	40-94	
Acenaphthene	ug/L	0.040 U	5	3.8	76	42-96	
Acenaphthylene	ug/L	0.030 U	5	3.5	70	39-90	
Anthracene	ug/L	0.043 U	5	4.4	88	46-109	
Benzo(a)anthracene	ug/L	0.055 U	5	4.6	91	50-116	
Benzo(a)pyrene	ug/L	0.12 U	5	4.6	91	48-117	
Benzo(b)fluoranthene	ug/L	0.027 U	5	4.6	92	51-124	
Benzo(g,h,i)perylene	ug/L	0.15 U	5	4.6	91	47-121	
Benzo(k)fluoranthene	ug/L	0.16 U	5	4.8	95	50-125	
Chrysene	ug/L	0.026 U	5	4.9	99	53-122	
Dibenz(a,h)anthracene	ug/L	0.13 U	5	4.6	91	45-123	
Fluoranthene	ug/L	0.018 U	5	4.5	90	52-119	
Fluorene	ug/L	0.088 U	5	3.7	74	44-100	
Indeno(1,2,3-cd)pyrene	ug/L	0.12 U	5	4.5	91	46-121	
Naphthalene	ug/L	0.29 U	5	3.6	72	40-91	
Phenanthrene	ug/L	0.16 U	5	4.4	88	47-111	
Pyrene	ug/L	0.032 U	5	4.5	90	51-120	
2-Fluorobiphenyl (S)	%				63	38-92	
p-Terphenyl-d14 (S)	%				77	54-112	

SAMPLE DUPLICATE: 3172686

		35508497001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1-Methylnaphthalene	ug/L	0.19 U	0.19 U		40	
2-Methylnaphthalene	ug/L	0.68 U	0.68 U		40	
Acenaphthene	ug/L	0.040 U	0.040 U		40	
Acenaphthylene	ug/L	0.030 U	0.030 U		40	
Anthracene	ug/L	0.043 U	0.043 U		40	
Benzo(a)anthracene	ug/L	0.055 U	0.055 U		40	
Benzo(a)pyrene	ug/L	0.12 U	0.12 U		40	
Benzo(b)fluoranthene	ug/L	0.027 U	0.027 U		40	
Benzo(g,h,i)perylene	ug/L	0.15 U	0.15 U		40	
Benzo(k)fluoranthene	ug/L	0.16 U	0.16 U		40	
Chrysene	ug/L	0.026 U	0.026 U		40	
Dibenz(a,h)anthracene	ug/L	0.13 U	0.13 U		40	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: JEA 5TH ST Pace Project No.: 35508499

SAMPLE DUPLICATE: 3172686

Descenter Halts Desch Desch DDD DDD Ou	
Parameter Units Result Result RPD RPD Qu	ualifiers
Fluoranthene ug/L 0.018 U 0.018 U 40	
Fluorene ug/L 0.088 U 0.088 U 40	
Indeno(1,2,3-cd)pyrene ug/L 0.12 U 0.12 U 40	
Naphthalene ug/L 0.29 U 0.29 U 40	
Phenanthrene ug/L 0.16 U 0.16 U 40	
Pyrene ug/L 0.032 U 0.032 U 40	
2-Fluorobiphenyl (S) % 65 67	
p-Terphenyl-d14 (S) % 77 77	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QC Batch: 583705			Analy	vsis Me	thod:	FL-P	PPO						
	10							/	. Malura a				
QC Batch Method: EPA 35	-		Analy	sis Des	scription:	FL-P	RUW	/ater Low	volume				
Associated Lab Samples: 3	55084990	002											
METHOD BLANK: 3173560				Matrix:	Water								
Associated Lab Samples: 3	55084990	002											
			Blar	ık	Reporting	9							
Parameter		Units	Res	ult	Limit		M	DL	Analyze	ed Q	ualifiers	3	
Petroleum Range Organics		mg/L	C	0.80 U		1.0		0.80	11/04/19 0	9:36			
N-Pentatriacontane (S)		%		81	42-1				11/04/19 0				
o-Terphenyl (S)		%		80	66-1	139			11/04/19 0	9:36			
LABORATORY CONTROL SA	MPLE:	3173561											
			Spike		LCS	L	CS	%	6 Rec				
Parameter		Units	Conc.		Result	%	Rec	L	imits	Qualifiers			
Petroleum Range Organics		mg/L		5	3.9			77	66-119				
N-Pentatriacontane (S)		%					1	94	42-159				
o-Terphenyl (S)		%					;	81	66-139				
MATRIX SPIKE & MATRIX SP	IKE DUP	LICATE: 3173	737		31737	38							
			MS	MSD									
		35508703001	Spike	Spike			ISD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Re	esult	% Red	c % Rec	: Limits	RPD	RPD	Qual

		35508703001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Petroleum Range Organics	mg/L	0.74 U	4.8	4.8	3.7	3.9	77	81	65-123	5	20	
N-Pentatriacontane (S)	%						92	88	42-159			
o-Terphenyl (S)	%						80	86	66-139			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: JEA 5TH ST Pace Project No.: 35508499

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-O Pace Analytical Services - Ormond Beach

ANALYTE QUALIFIERS

- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- U Compound was analyzed for but not detected.
- 1p Surrogate loss due to heavy emulsion (noted in prep log)
- J(M1) Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- J(S5) Estimated Value. Surrogate recovery outside control limits due to matrix interferences (not confirmed by re-analysis). J(v2) The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the
- J(v2) The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.
- J(v3) The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.
- V Indicates that the analyte was detected in both the sample and the associated method blank.
- c2 Acid preservation may not be appropriate for the analysis of 2-Chloroethylvinyl ether.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JEA 5TH ST Pace Project No.: 35508499

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
35508499002	FS-TMW-2	EPA 8011	583130	EPA 8011	583426
35508499002	FS-TMW-2	EPA 3510	583705	FL-PRO	583938
35508499001	FS-TMW-1	EPA 3010	583131	EPA 6010	583219
35508499002	FS-TMW-2	EPA 3010	583131	EPA 6010	583219
35508499001	FS-TMW-1	EPA 3510	583454	EPA 8270 by SIM	583689
35508499002	FS-TMW-2	EPA 3510	583454	EPA 8270 by SIM	583689
35508499001	FS-TMW-1	EPA 8260	583339		
35508499002	FS-TMW-2	EPA 8260	583908		

ument ompleted accurately.	Page: 1 Of 1		Regulatory Agency	State / Location	FL	Requested Analysis Filtered (Y/N)		(0103) MI	EDB by 8011 OR9-L7RPH FLoad Iosolved Lead Dissolved PAH 8270 by SI PAH 8270 by SI PAH 92001 Chlorid	X HOLO JSS	2		1217	115 majores								DATE TIME SAMPLE CONDITIONS	12/24/20 05 00	12/10 1210	10/20/19/1702	K R T HAROC BOI	no t	MP in	
084999 / / Analytical Request Document DocuMENT. All relevant fields must be completed accurately.	ition:	Atternuon. Company Name:	Address: Pare Ounte:	Pace Project Manager. todd.rea@pacelabs.com.	9-9	Requested Ar	Z Preservatives	۲۹۶ ۲۹۶ ۱۳ ۱۳ ۲۹۹ ۲۹۹ ۲۹۹ ۲۹۹ ۲۹۹ ۲۹۹ ۲۹۹ ۲۹۹ ۲۹۹ ۲۹	Н	0; 3-j	×											DATE TIME ACCEPTED BY / AFFILIATION	E 10/28/2019 1100 20 / My=	10/23/19 12:10 /1000 MARE	1920/19 MIS FLX	THE LWD -	SAMPLER NAME AND SIGNATURE	Cargier lasmann	and the second s
MO#: 355	Se. Require	es Engineering, Inc.	Dirichase	Fax	Project #:		s to left) OD CO	Dimiking Water DW Dimiking Water DW Waste Water WW Product P SoluSolid SL (\$666 Valled C (\$666 V	Wipe Other Tissue 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	1 w Giol29/14 1	2-2 Wtc10/19/1/1 12											ADDITIONAL COMMENTS RELINQUISHED BY I AFFILIATION	EMPTY CONTAINERS	a for more	MEAN US NUMME PREE	L(X	SAMPLER NAMI		
Pace Anal Atical	Section A Required Client Information:	Company: Meskel & Associates Engineering, Inc Address: 12348 Guava Court	Jacksonville, FL 32225 Email:	Phone: Updatianal Countrook.com	Requested Due Date:			SAMPLE ID	One Character per box. (A-Z 0-9 /, -) Sample Ids must be unique	- FS-TMW-	2 FS-TMW	3	4	2	9	7	8	G	10	11	12	ADDITIONAL		Proj No. 0103-0018	HOLD DISKULTS	Pa	age 2	?7 of ∶	28

Pace Analytical	Document Name: Sample Condition Upon Receipt F Document No.:	Form	Document Revised: May 30, 2018 Issuing Authority:
	F-FL-C-007 rev. 13		Pace Florida Quality Office
	Sample Condition Upon	Receipt Form (6	(11 ^R)
Project #	WO#: 35508	499 Date: 11/06/19	Date and Initials of person:
Project Manager:	PM: TSR DUE CLIENT: MEASEN		abel:
Client:	CLIENT: HEHOLI		eliver:
	DO Date: 10/3	<u> </u>	0:40nitials: 7777
State of Origin:		rojects, all containers verifi	ed to ≤6 °C
Cooler #1 Temp.°C , Y (Visual)	(Correction Factor)	Actual)	Samples on ice, cooling process has begun
Cooler #2 Temp.°C(Visual)			Samples on ice, cooling process has begun
Cooler #3 Temp.°C(Visual)			Samples on ice, cooling process has begun
Cooler #4 Temp.°C(Visual)			Samples on ice, cooling process has begun
Cooler #5 Temp.°C(Visual)		10	Samples on ice, cooling process has begun
Cooler #6 Temp.°C(Visual)	(Correction Factor)	(Actual)	Samples on ice, cooling process has begun
Courier: Ged Ex UPS	USPS Client Cor	mmercial 🗆 Pace	Other
Shipping Method:			International Priority
Other	(*)		
Billing: Recipient Se	nder 🛛 Third Party	Credit Card	Unknown
Tracking #			5
Packing Material: Bubble Wrap	bble Bags None Oth Shorted Date:	er Shorte	d Time: Qty:
	/	omments:	
Chain of Custody Present			
Chain of Custody Filled Out		-	
Relinquished Signature & Sampler Name COC Samples Arrived within Hold Time	Yes No N/A		
Rush TAT requested on COC			
Sufficient Volume			
Correct Containers Used			
Containers Intact	ØYes □ No □N/A		
Cample Labels match COC (sample IDs & date/time ollection)	I∕ÍYes □ No □N/A		
Il containers needing acid/base preservation have t hecked.			reservation Information:
Il Containers needing preservation are found to be	n	Lot #/Trace #:	
ompliance with EPA recommendation: Exceptions: VOA, Coliform, TOC, C	ØYes □ No □N/A	Date:	Time:
leadspace in VOA Vials? (>6mm):			
rip Blank Present:	□Yes □)No □N/A		
lient Notification/ Resolution: Person Contacted:		Date/Time:	
Comments/ Resolution (use back for additio	nal comments):		
Project Manager Review:			Date: Page 28 of

Appendix E

NOTICE OF INTENT TO USE THE GENERIC PERMIT FOR DISCHARGE OF GROUND WATER FROM DEWATERING OPERATIONS (subsection 62-621.300(2), F.A.C.)

PART I INSTRUCTIONS

A. Will dewatering operations be performed as part of construction activities?

NO Continue completing this form.

YES You may elect to obtain coverage under the Generic Permit for Stormwater Discharge from Large and Small Construction Activities (CGP), DEP Form 62-621.300(4)(b), which will cover both the construction and dewatering operations.

B. This Notice of Intent (NOI) form shall be completed and submitted to the industrial wastewater program at the local DEP office as part of the request for coverage under the Generic Permit for Discharge of Ground Water from Dewatering Operations subsection 62-621.300(2)(a), F.A.C., at least 14 days prior to planned commencement of discharge. For the purposes of this generic permit, 'dewatering operations' means temporarily lowering the water table by draining or pumping of ground water from activities such as excavations, building foundations, vaults, trenches and aquifer performance tests for exploratory purposes. Applicants should be familiar with the rule, generic permit document and instructions before completing this NOI form. Attach additional information on separate sheets as necessary.

- Submit this completed form and supporting documentation and the \$100.00 application fee to the industrial wastewater program at the local DEP office. Electronic submittal is preferred and may be available at http://www.dep.state.fl.us/water/wastewater/iw/iwforms.htm. To locate a local DEP office, go to: http://www.dep.state.fl.us/secretary/dist/default.htm.
- 2. Checks should be payable to the Florida Department of Environmental Protection. **DEP will not process this form without the appropriate fee.**
- 3. If an item is not applicable to your project, indicate "NA" in the appropriate space provided.

PART II DEWATERING INFORMATION:

A. Is the project site currently identified as contaminated, or is there a site within 500 feet of the dewatering project identified as contaminated, by a DEP or EPA cleanup/restoration program? You may use the Quick Links to DEP's Contamination Locator Map (CLM) and DEP's Institutional Controls Registry (ICR) Web Viewer to determine cleanup restoration status. You may access the CLM at: http://webapps.dep.state.fl.us/DepClnup/welcome.do, or http://ca.dep.state.fl.us/mapdirect/?focus=contamlocator. The ICR may be accessed at: http://www.dep.state.fl.us/waste/categories/brownfields/pages/ICR.htm, or http://ca.dep.state.fl.us/mapdirect/?focus=icr

YES Continue to B.

NO Continue to D.

B. Has the site been remediated?

YES Continue to D.

NO Continue to C.

C. Are the pollutants of concern (i.e. contamination) present in ground water at the dewatering project site at concentrations equal to or exceeding the surface water criteria in Rule 62-302.530?

YES Dewatering operations <u>do not</u> qualify for coverage under this generic permit. However, the site may qualify for coverage under Rule 62-621.300(1), F.A.C., or under an individual wastewater permit on the appropriate form listed in Rule 62-620.910, F.A.C.

NO Continue to D.

D. Have Best Management Practices (BMPs) for this generic permit been developed or addressed in an existing BMP plan in accordance to the requirements of this generic permit. BMPs must be implemented upon commencement of the discharge

YES Continue to Part III.

NO Your application cannot be processed until this item is complete.

NOTE: Chemical treatment is allowed as described in the Best Management Practices of the Generic Permit. However, sites that use cationic treatment chemicals are not eligible for coverage under Generic Permit for Discharge of Ground Water from Dewatering Operations unless concurrence from the applicable local DEP office is obtained in advance of the submittal of this NOI. Appropriate controls and implementation procedures designed to ensure that the use of cationic treatment chemicals will not cause or contribute to a violation of water quality standards shall be included in the site specific BMPs.

PART III DISCHARGE INFORMATION:

A. Please identify receiving surface water body.

PART IV SITE INFORMATION

A. COVERAGE STATUS:

1. Is this application for new coverage or for renewal of coverage under the generic permit?	New 🗌	Renewal 🗌
2. If this application is for renewal of coverage under the generic permit, provide the FLG No.	FLG No:	

B. NAME OF SITE:

Site Name:

C. PERMITTEE INFORMATION:

1. Name:	2. Tit	le (Owner, Ope	erator, Contractor, etc.):
3. Phone No.: () -	4. Fax No	o.: ()	-
4. Email Address:			
5. Street or P. O. Box:			
6. City or Town:		7. State:	8. Zip Code:

D. SITE LOCATION INFORMATION:

1. Street, Route or Other Specific Identifier:				
2. County:				
3. City or Town:		4. State:	5. Zip Code:	
6. Latitude: ° ′ ″	7. Lon	gitude: °	'	"
8. If records required in accordance with Part V. of off-site, please provide the physical address of site must be accessible for inspection of records by the	where 1	records will be k		-

PART V CERTIFICATIONS

A. OWNER OR OPERATOR¹

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name & Official Title (type or print)

Signature

Telephone No.

Date signed

Email Address

¹Signatory requirements are contained in Rule 62-620.305, F.A.C.

STATE OF FLORIDA

DEPARTMENT OF ENVIRONMENTAL PROTECTION

GENERIC PERMIT

FOR

DISCHARGES FROM PETROLEUM

CONTAMINATED SITES

Document number 62-621.300(1) Effective Date: February 14, 2000

Generic Permit for Discharges From Petroleum Contaminated Sites

(1) Effluent Limitations and Monitoring Requirements for Existing Sources and New Dischargers.

(a) Contamination by Automotive Gasoline. The facility is authorized to discharge treated ground water and storm water that has been contaminated by automotive gasoline. These contaminated waters shall be treated by air stripping, followed by activated carbon adsorption, if necessary, or equivalent treatment to meet the following effluent limitations. Such discharges shall be limited and monitored by the permittee as specified in Table 1:

	Effluent L	imitations	Monitoring R	equirements
Effluent	Daily Avg	Daily Max	Measurement	Sample
Characteristic			Frequency	Туре
Flow, (MGD)	Report	Report	Continuous	Flowmeter
Benzene, $\mu g/l$		1.0	1/month	Grab
*Total Lead		30.0	1/month	Grab
µg/l				
pH, Standard	See Paragra	ph (1)(a)2		Grab or
Units				Continuous
Acute Whole	See Paragra	ph (1)(a)1 a	and	Grab
Effluent	Paragraph (2)(b)		
Toxicity				

Tal	bl	е	1

*Monitoring for this parameter is required only when contamination results from leaded fuel.

1. An LC_{50} of 100% or less in a test of 96 hours duration or less shall constitute a violation of Rule 62-4.244(3)(a), F.A.C., and the terms of this permit. The testing for this requirement must conform with Rule 62-621.800, F.A.C.

2. For fresh waters and coastal waters, the pH of the effluent shall not be lowered to less than 6.0 units for fresh waters, or less than 6.5 units for coastal waters, or raised above 8.5 units, unless the permittee submits natural background data in the NOI request confirming a natural background pH outside of this range. If natural background of the receiving water, as revealed by sampling data from the permittee in the NOI request, is determined to be less than 6.0 units for fresh waters, or less than 6.5 units in coastal waters, the pH shall not vary below natural background or vary more than one (1) unit above natural background for fresh and coastal waters. If natural

background of the receiving water, as revealed by sampling data from the permittee in the NOI request, is determined to be higher than 8.5 units, the pH shall not vary above natural background or vary more than one (1) unit below natural background of fresh and coastal waters. The acceptable pH range shall be included in the letter granting permit coverage and on the DMR. The pH shall be monitored once every month by grab sample, or continuously with a recorder. For purposes of this section only, fresh waters are those having a chloride concentration of less than 1500 mg/l, and coastal waters are those having a chloride concentration equal to or greater than 1500 mg/l.

3. In accordance with Rule 62-302.500(1)(a-c), F.A.C., the discharge shall at all times be free from floating solids, visible foam, turbidity, or visible oil in such amounts as to form nuisances on surface waters.

4. Samples taken in compliance with the monitoring requirements specified above shall be taken at the nearest accessible point after final treatment but prior to actual discharge or mixing with the receiving waters.

(b) Contamination by Aviation Gasoline, Jet Fuel or Diesel Fuel. The permittee is authorized to discharge treated ground water and storm water that has been contaminated by aviation gasoline, jet fuel or diesel fuel. These contaminated waters shall be treated by air stripping, followed by activated carbon adsorption, if necessary, or equivalent treatment to meet the following effluent limitations. Such discharges shall be limited and monitored by the permittee as specified in Table 2:

Table	2
-------	---

	Effluent L:	imitations	Monitoring R	equirements
Effluent	Daily Avg	Daily Max	Measurement	Sample
Characteristic			Frequency	Туре
Flow, (MGD)	Report	Report	Continuous	Flowmeter
Benzene, $\mu g/l$		1.0	1/month	Grab
Naphthalene,		100.0	1/month	Grab
µg/l				
*Total Lead		30.0	1/month	Grab
µg/l				
pH, Standard	See Paragra	ph (1)(b)2		Grab or
Units				Continuous
Acute Whole	See Paragra	ph (1)(b)1 a	and	Grab
Effluent	Paragraph (2)(b)		
Toxicity				

*Monitoring for this parameter is required only when contamination results from leaded fuel.

1. An LC_{50} of 100% or less in a test of 96 hours duration or less shall constitute a violation of Rule 62-4.244(3)(a), F.A.C., and the terms of this permit. The testing for this requirement must conform with Rule 62-621.800, F.A.C.

2. The permittee shall comply with the same pH requirements as specified in paragraph (1)(a)2, of this permit. The pH shall be monitored once every month by grab sample, or continuously with a recorder.

3. In accordance with Rule 62-302.500(1)(a-c), F.A.C., the discharge shall at all times be free from floating solids, visible foam, turbidity, or visible oil in such amounts as to form nuisances on surface waters.

4. Samples taken in compliance with the monitoring requirements specified above shall be taken at the nearest accessible point after final treatment but prior to actual discharge or mixing with the receiving waters.

(c) Short term discharges.

1. If benzene, naphthalene, or total lead concentrations indicative of contamination from petroleum fuels are known to be present as a result of site assessment, and the discharge will occur for thirty (30) days or less, the permittee shall comply with the applicable effluent limitations and monitoring requirements shown in Table 3.

Table 3

	Effluent Limitations		Monitoring Requirements	
Effluent	Daily Avg	Daily Max	Measurement	Sample
Characteristic			Frequency	Туре
Flow, (MGD)	Report	Report	Continuous	Flowmeter
Benzene, $\mu g/l$		1.0	1/week	Grab
Naphthalene,		100.0	1/week	Grab
µg∕l				
*Total Lead		30.0	1/week	Grab
µg∕l				
pH, Standard Units	See Paragraph (1)(a)2			Grab or Continuous

a. For discharges that last for less than one week, daily monitoring shall be required for the applicable parameters.

b. Discharge Monitoring Reports shall be submitted to the Department within thirty (30) days after termination of the discharge, along with a letter stating that discharge has ceased.

c. Coverage under paragraph (1)(c)1 is limited to a total of 30 days of discharge.

2. If benzene, naphthalene, or total lead concentrations indicative of contamination from petroleum fuels are known to be present as a result of site assessment, and the discharge is for a pump test to characterize the aquifer and will last for eight (8) hours or less, the discharge is covered under this generic permit if the following conditions are met.

a. The effluent limitations shown in Table 3 are met.

b. A Discharge Monitoring Report is sent to the Department within thirty (30) days after termination of the discharge.

c. Coverage under paragraph (1)(c)2 is limited to a total of eight (8) hours of discharge.

3. Applicants who wish to be covered under the provisions of paragraph(1)(c)1 or 2 but have not had the site assessed, may obtain coverage only if the reported values for the parameters listed in Table 4 do not exceed any of the listed screening values. Before discharge can occur, analytical tests on untreated samples of the ground water shall be performed for the parameters listed in Table 4.

Table 4

	Screening Values for Discharge into:	
Parameter	Fresh	Coastal
	Waters	Waters
Total Organic Carbon (TOC)	10.0 mg/l	10.0 mg/l
pH, standard units	6.0-8.5	6.5-8.5
Total Recoverable Mercury	0.012 µg/l	0.025 µg/l
Total Recoverable Cadmium	9.3 µg/l	9.3 µg/l
Total Recoverable Copper	2.9 µg/l	2.9 µg/l
Total Recoverable Lead	0.03 mg/l	5.6 µg/l
Total Recoverable Zinc	86.0 µg/l	86.0 µg/l
Total Recoverable Chromium (Hex.)	11.0 µg/l	50.0 µg/l
Benzene	1.0 µg/l	1.0 µg/l
Naphthalene	100.0 µg/l	100.0 µg/l

a. If any of the analytical test results exceed the screening values in Table 4, except TOC, benzene, naphthalene, and lead, then discharge is not authorized by this permit.

b. For initial TOC values that exceed the screening values listed in Table 4, which may be caused by naturallyoccurring, high molecular weight organic compounds, the permittee may request to be exempted from the TOC requirement. To request this exemption the permittee shall submit additional information with an NOI which describes the method used to determine that these compounds are naturally occurring.

c. If levels of benzene, naphthalene, or lead are detected in amounts that exceed the screening values listed in Table 4, which indicate contamination from petroleum fuels, the facility may proceed in accordance with paragraph (1)(c)1 or 2.

(2) Other permit requirements.

(a) Within sixty (60) days after the effective date of this permit or startup of discharge, the permittee shall submit the results of the following analyses. These analyses are not required for short term dischargers covered under paragraph (1)(c). These analyses shall be performed on a representative sample of the ground water effluent discharge, taken after final treatment.

The following analyses are required one time only during the coverage of this permit:

1. EPA Method 625 - Acid and Base/Neutral Extractable Organics

2. EPA Method 624 - Purgeable Organics

(b) Within thirty (30) days after commencement of discharge, permittees, other than those seeking coverage under paragraph (1)(c), shall test for acute toxicity as provided for in Rule 62-621.800, F.A.C., to evaluate whole effluent toxicity of the discharge from the outfall. If more than one (1) outfall exists, separate tests shall be performed on each outfall.

(c) If the pH is monitored continuously, the pH values shall not deviate outside the required range more than 1% of the time in any calendar month; and no individual excursion shall exceed sixty (60) minutes. An "excursion" is an unintentional and temporary incident in which the pH value of discharge wastewater exceeds the range set forth in this permit.

(d) All of the general conditions listed in Rule 62-621.250, F.A.C., are applicable to this generic permit.

(e) A Best Management Practices (BMP) Plan shall be prepared in accordance with Rule 62-621.700, F.A.C., and in conjunction with development of the Remedial Action Plan required by the Department.

(f) The permittee shall notify the Department in writing within thirty (30) days after the permanent termination of discharge to surface waters from the facility.

(3) Test Procedures.

(a) In performing analyses for dissolved constituents in surface and ground waters, the permittee shall use the guidelines recommended and described in Rules 62-770.600(8)(a-d), F.A.C.

(b) If the petroleum contamination is from a petroleum fuel in which the source of contamination has not been identified, the ground water shall be analyzed using the recommended methods listed below for the following parameters as described in Rule 62-770.600(8)(c)1, F.A.C.:

1. Lead - EPA Method 239.2 or Standard Method 304;

2. Priority Pollutant Volatile Organics - EPA Method 624;

3. Priority Pollutant Extractable Organics - EPA Method 625; and

4. Non-Priority Pollutant Organics (with GC/MS Peaks greater than 10 ppb) - EPA Methods 624 & 625.

(4) Reporting of Monitoring Results. Monitoring results obtained for each calendar month shall be summarized and reported on a Discharge Monitoring Report (DMR) form (DEP form 62-620.910(10)), once each month. Unless stated otherwise in this permit, these forms shall be submitted after each calendar quarter and postmarked no later than the 28th day of the month following the completed calendar quarter. For example, data for January-March shall be submitted by April 28. Calendar quarters are January-March, April-June, July-September and October-December. Signed copies of these and all other reports required by this permit shall be submitted to the Department at the following address:

> Department of Environmental Protection Bureau of Water Facilities Regulation Wastewater Compliance Evaluation Section Mail Station #3551 2600 Blair Stone Road

Tallahassee, FL 32399-2400

If no discharge occurs during the reporting period, sampling requirements of this permit do not apply. The statement "No Discharge" shall be written on the DMR form.

(5) Application Requirements

(a) Unless stated otherwise in this permit, all dischargers seeking coverage under this generic permit are required to submit a Notice of Intent (NOI) to the appropriate Department district office. The NOI shall include:

1. the name and address of the person that the permit coverage will be issued to;

2. the name, and address of the operation, including county location;

3. any applicable individual wastewater permit
number(s);

4. if applicable, the identification of any new discharge location not contained in the expired permit;

5. evidence that the operation has obtained approval of a Remedial Action Plan (RAP) Order from the Department;

6. a map showing the facility and discharge location
(including latitude and longitude);

7. the name of the receiving water; and

8. a Pollution Prevention Plan prepared in accordance with paragraph (6) of this permit, for discharges lasting over one (1) year.

(b) Dischargers who have not previously obtained an individual wastewater permit are required to submit the NOI at least thirty (30) days before the discharge is to begin.

(c) Dischargers with current individual wastewater permits that desire coverage under this generic permit are required to file an NOI with the Department at least thirty (30) days prior to expiration of their current permit(s).

(d) Facilities seeking coverage under paragraph (1)(c)1 of this permit shall be required to submit to the Department the date the discharge is expected to cease, results of the analytical data required under paragraph (1)(c)3, if applicable, and the same information in paragraph (5)(a), except items (5)(a)3, 4, 5, and 8. Notification of coverage to discharge will be upon receipt of a letter from the Department acknowledging short-term coverage. The Department shall process requests for shortterm coverage pursuant to the provisions of Rule 62-620.510(1)-(5), F.A.C. The Department shall render a decision as to whether to grant or deny coverage within 30 days after the Department has received all of the information necessary to make the application complete. If this time schedule is not met, the applicant may apply for an order from the circuit court requiring the Department to render a decision within a specified time. Discharge may not begin until the applicant receives this letter from the Department.

(e) For facilities seeking coverage under paragraph (1)(a) or (b) of this permit, notification of coverage shall be given by the Department by certified mail to the permittee, with the issuance date for each facility being the effective date of coverage by the Department. The Department shall process requests for coverage pursuant to the provisions of Rule 62-620.510(1)-(5), F.A.C. The Department shall render a decision as to whether to grant or deny coverage within 30 days after the Department has received all of the information necessary to make the application complete. If this time schedule is not met, the applicant may apply for an order from the circuit court requiring the Department to render a decision within a specified time. Discharge may not begin until the applicant receives the notice of coverage.

(f) Facilities seeking coverage under paragraph (1)(c)2 of this permit, shall be covered automatically once the facility receives acceptable ground water screening values, if applicable.

(g) Coverage under this generic permit is limited to a term not to exceed five years from the effective date of coverage. Permittees may request continued coverage under this generic permit by submitting a complete NOI in accordance with paragraph (5)(a) to the Department district office. Requests for continued coverage shall be made at least 180 days before expiration of the current coverage.

(h) Annual regulatory program and surveillance fees are required for all facilities that discharge in excess of

thirty (30) days during the life of this permit. The fees are due in accordance with Rule 62-4.052, F.A.C.

(6) Pollution Prevention Plan. New permittees with long term treatment systems expected to discharge one (1) year or more shall develop a Pollution Prevention Plan for the site and submit it with the NOI. It shall contain the following information:

(a) A narrative of what caused the ground water contamination.

(b) Methods currently being deployed at the site to prevent ground water contamination from reoccurring.

(c) Other alternative treatment options which were considered in reducing the ground water contamination.

(d) Explanation of why long term treatment of discharge to surface waters of the State was chosen as opposed to:

1. An <u>in situ</u> ground water remediation technique which does not involve recovery of contaminated water;

2. An alternative means of discharge or disposal of treated ground water, such as re-infiltration on site; or,

3. Using a limited scope cleanup strategy which involves short term ground water recovery followed by monitoring-only at the site.