Report of Groundwater Sampling and Analyses

For

JEA Beverly Hills Septic Tank Phase Out

Jacksonville, Florida

MAE Project No.: 0006-0033

December 9, 2019

Prepared for:

England, Thims & Miller, Inc. 14775 Old St. Augustine Rd Jacksonville, FL 32258

Prepared by:

Geotechnical r Environmental r Inspection r Testing

3728 Philips Highway, Suite 208 Jacksonville, Florida 32207 Phone (904) 519-6990 Fax (904) 519-6992

December 9, 2019

Robert Kermitz, P.E. England-Thims & Miller, Inc. 14775 Old St. Augustine Road Jacksonville, Florida 32258

Reference: Report of Groundwater Sampling and Analysis JEA Beverly Hills Septic Tank Phase Out Jacksonville, Florida MAE Project No. 0006-0033

Dear Mr. Kermitz,

Meskel & Associates Engineering, PLLC (MAE) is pleased to provide you with this Report of Groundwater Sampling for JEA Beverly Hills Septic Tank Phase Out project, located in Jacksonville, Duval County, Florida.

If you have any questions or concerns, please contact the undersigned at (904) 519-6990.

Sincerely,

MESKEL & ASSOCIATES ENGINEERING, PLLC MAE FL Certificate of Authorization No. 28142

Gabriel S. Pastrana, P.E. Professional Associate

Scott A. Davidson, P.G.
Principal, Director of Environmental Services

Distribution: Robert Kermitz, P.E. – England-Thims & Miller

1 pdf

Groundwater Sampling Report Beverly Hills-Septic Tank Phase Out MAE Project No. 0006-0033

TABLE OF CONTENTS

Subject

Page

1.0	INTRODUCTION	.1
2.0	REPORT LIMITATIONS	.1
3.0	NEARBY CONTAMINATED SOURCES	.2
4.0	TEMPORARY MONITORING WELL INSTALLATION	.2
5.0	WATER SAMPLING AND ANALYTICAL RESULTS	.2
6.0	CONCLUSIONS AND PERMIT REQUEST	.3

FIGURES

Figure 1.	Site Vicinity Map
Figure 2.	Temporary Monitoring Well Location Map Ida Street and Lem Turner Road
Figure 3.	Temporary Monitoring Well Location Map Oriole Street and Edgewood Avenue

APPENDICES

Appendix A.	Soil Boring Logs and Well Completion Data
Appendix B.	Groundwater Sampling Logs
Appendix C.	Laboratory Analytical Report and Chain of Custody Record
Appendix D.	FDEP NOI Application

Groundwater Sampling Report Beverly Hills-Septic Tank Phase Out MAE Project No. 0006-0033

List of Acronyms and Abbreviations

- BDLBelow Detection Limits
- BLS.....Below Land Surface
- BTEXBenzene, Toluene, Ethyl benzene, and Xylenes
- COC.....Contaminants of Concern
- DODissolved Oxygen
- DPEDual Phase Extraction
- MAE.....Meskel & Associates Engineering, PLLC.
- EPAUnited States Environmental Protection Agency
- FACFlorida Administrative Code
- FDEPFlorida Department of Environmental Protection
- FL-PRO.....Florida Petroleum Residual Organic (testing method)
- GCTLGroundwater Cleanup Target Levels (as defined in 62-777, FAC)
- MSL.....Mean Sea Level
- MTBE Methyl Tert-Butyl Ether
- NADC.....Natural Attenuation Default Concentrations
- NPDES.....National Pollutant Discharge Elimination System
- NTUNephelometric Turbidity Units
- PAH.....Polycyclic Aromatic Hydrocarbons
- RAP Remedial Action Plan
- SVDFWScreening Values for Discharges into Fresh Waters
- SVESoil Vapor Extraction
- TRPH.....Total Recoverable Petroleum Hydrocarbons
- VCOVerbal Change Order
- VOAVolatile Organic Aromatics
- µg/L Micrograms per Liter

Report of Groundwater Sampling and Analysis JEA Beverly Hills-Septic Tank Phase Out Jacksonville, Florida MAE Project No. 0006-0033

Prepared by:

MESKEL & ASSOCIATES ENGINEERING, PLLC 3728 Philips Highway, Suite 208 Jacksonville, Florida 32207

GEOLOGY BUSINESS LICENSE NUMBER – GB683

In accordance with the provisions of Florida Statutes Chapter 492, this Groundwater Sampling Report for the JEA Beverly Hills Septic Tank Phase Out located in Jacksonville, Duval County, Florida has been prepared under the direct supervision of a Professional Geologist registered in the State of Florida. This report was prepared in accordance with generally accepted professional practices pursuant to Chapter 492 of the Florida Statutes. The data, findings, recommendations, specifications or professional opinions were prepared solely for the use of the JEA and England, Thims & Miller, Inc. Meskel & Associates Engineering, PLLC makes no other warranty, either expressed or implied, and is not responsible for the interpretation by others of these data.

Scott A. Davidson, P.G. Date Principal Geologist

1.0 INTRODUCTION

Meskel & Associates Engineering, PLLC (MAE) has completed a groundwater sampling program to provide chemical background data to assist in the submittal of a Notice of Intent (NOI) to potentially discharge dewatering effluent to '*Waters of the State'* through the Florida Department of Environmental Protection (FDEP) under the auspices of the *Generic Permit for the Discharge of Produced Groundwater from Any Non-Contaminated Site Activity*, FAC 62-621.300(2).

General project information contained within the JEA Solicitation No. 082-17 was reviewed for this project. In addition, specific project details and proposed utility force main routes were provided in several emails from Robert Kermitz, P.E. with England, Thims & Miller, Inc. (ETM).

The site for the subject project is located in the neighborhood of Beverly Hills, starting at Lake Park Drive and continuing to the intersection of Ida Street and Calvin Street, in Jacksonville, Florida. The general site location is shown on Figure 1.

Based on the provided information, we understand that the Beverly Hills Septic Tank Phase-Out project will include construction of a sanitary sewer force main beginning at its connection with an existing force main on Lake Park Drive. We have assumed the pipe material will be PVC and that the embedment depth (pipe invert) will be 5 feet or less below existing grade.

From the Lake Park Drive beginning, the new pipeline continues south to Palmdale Street and then continues east to Oriole Street. The pipeline then turns south along Oriole Street to Rowe Avenue, and then continues east along Rowe Avenue to Grant Avenue where it turns south. The pipeline continues south on Grant Avenue to Ida Street and turns east. The pipeline continues along Ida Street to connect to an existing force main at the intersection of Ida Street and Calvin Street. It is also understood that the Edgewood Avenue and Lem Turner Road crossings will be accomplished with HDD methods.

If the force main alignment or other details change during development of final plans, then the recommendations in this report may need to be re-evaluated. Any changes in these conditions should be provided so the need for re-evaluation of our recommendations can be assessed prior to final design.

2.0 REPORT LIMITATIONS

This report has been prepared for the exclusive use of ETM for specific application to the proposed JEA Beverly Hills Septic Tank Phase Out project as described in this report. This groundwater evaluation was performed in accordance with generally accepted practices of this profession, undertaken in similar studies at the same time and in the same geographical area. We have endeavored to meet this standard of care, but may be limited by conditions encountered during performance or a client-driven scope of work. Where appropriate, these limitations are discussed in the text of the report, and an evaluation of their significance with respect to our findings has been conducted.

The evaluation and recommendations contained in this report are based on the data obtained from the water samples collected for this project. The scope of our services did not include any environmental assessment or testing for the presence or absence of hazardous or toxic materials in the soil, groundwater, or surface water above/beyond those parameters and chemical analytes examined. The collection of grab water samples, such as those collected at this site, are of limited scope and cannot eliminate the potential

that hazardous, toxic, or petroleum substances are present or have been released at the site beyond what is identified by the limited water sampling and chemical analyses. No limited groundwater sampling program can wholly eliminate uncertainty regarding the potential for contamination in connection with a property. Performance of this practice is intended to reduce, but not eliminate, uncertainty regarding the potential for groundwater and surface water impacts. These risks may be further evaluated, but not eliminated, through additional research and/or chemical evaluation and assessment.

If changes in the design or location of the project occur, the conclusions and recommendations contained in this report may need to be modified. We recommend that these changes be provided to us for our consideration. MAE is not responsible for conclusions, interpretations, opinions or recommendations made by others based on the data contained in this report.

3.0 NEARBY CONTAMINATED SOURCES

This investigation included a review of FDEP databases for nearby contaminated sites. The FDEP Contamination Locator Map (CLM) was consulted to evaluate properties near the area of the proposed force main installation. <u>http://prodenv.dep.state.fl.us/DepClnup/welcome.do</u> In addition, the FDEP Institutional Controls Map (ICM) was reviewed to evaluate sites within the FDEP-specified 500-foot search radius. <u>https://ca.dep.state.fl.us/mapdirect/?focus=icr</u>

The results of the requisite FDEP database review of the CLM and ICM, showed no impacted sites within the prescribed 500-foot radius of the proposed dewatering areas.

4.0 TEMPORARY MONITORING WELL INSTALLATION

Two temporary monitoring wells were installed at the project site on October 10, 2019. Temporary monitoring well BH-TMW-1 was installed within the grassed northern right-of-way of Ida Street just west of Lem Turner Road. Monitoring well BH-TMW-2 was installed within the grassed western right-of-way of Oriole Street just west of Edgewood Avenue. These locations were selected as they are in the area of the HDD roadway crossings which are located adjacent to commercial properties. The locations of the temporary monitoring wells are provided on Figure 2 and Figure 3.

The monitoring wells were installed by Transamerican Drilling and Testing, Inc. using a direct push rig. Continuous soil samples were collected from the surface to a depth of 15 feet below land surface (bls) to evaluate the groundwater depth and lithology. Well depths were determined based on groundwater level conditions. BH-TMW-1 was set to 13 feet bls. BH-TMW-2 was set to 15 feet bls. The monitoring wells were constructed of 10-feet of 1-inch diameter pre-packed PVC well screen (0.010-inch slot size), and sufficient riser to reach the ground surface. The sand pre-pack screens consisted of 20-30 Silica with a fine sand seal and cement to surface. The monitoring wells were finished with a locking cap, concrete pad, and an 8-inch manhole. Appendix A contains the soil boring log and well completion data.

5.0 WATER SAMPLING AND ANALYTICAL RESULTS

Groundwater samples were collected from the two temporary monitoring wells BH-TMW-1 and BH-TMW-

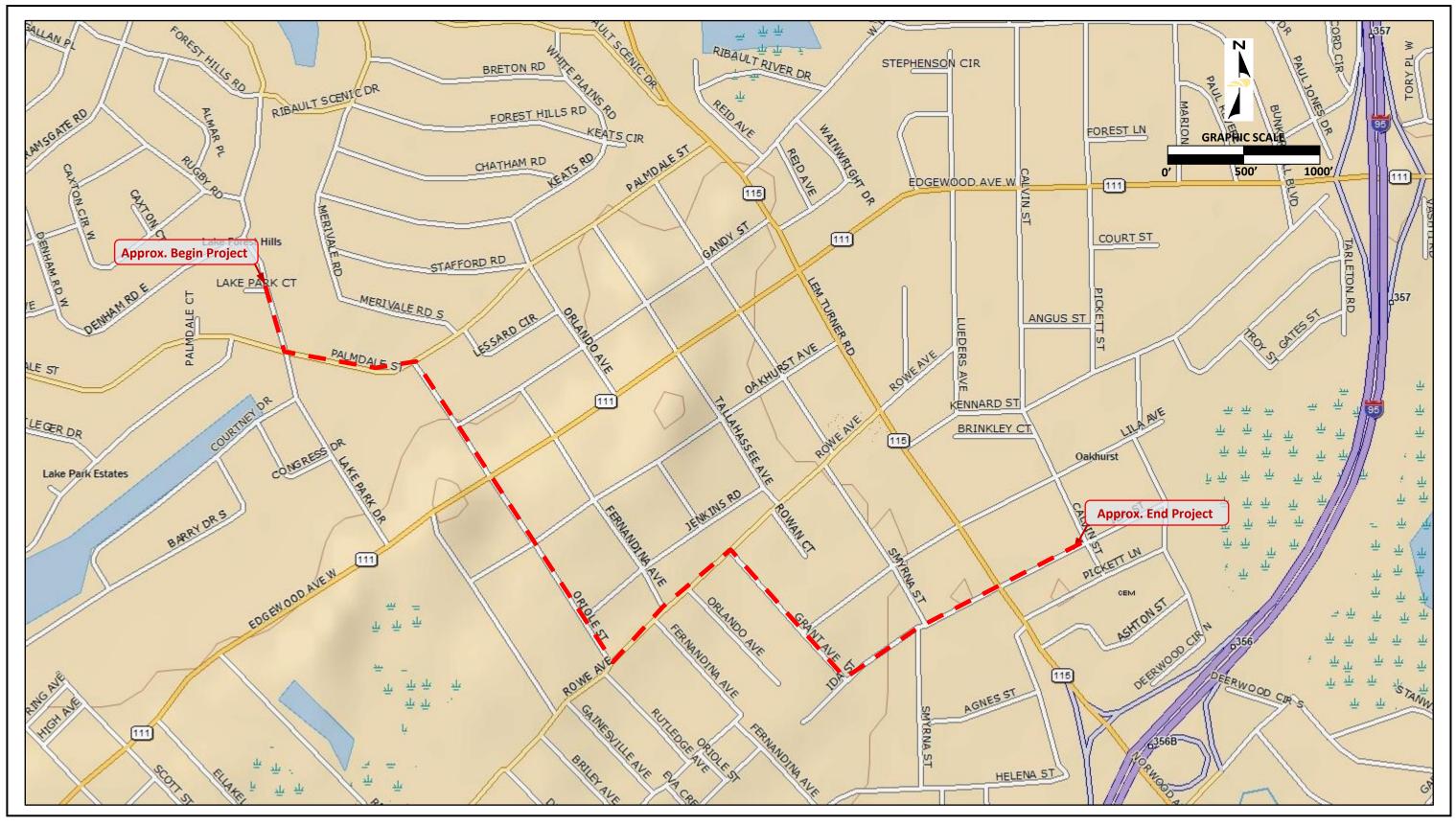
2 on October 29, 2019. During the sampling event, depth to water was measured at 3.34 and 6.62 bls, respectively. MAE established stable purging parameters at the respective sampling locations in general accordance with the FDEP Standard Operating Procedures (FS 2212) before the location was sampled. Appendix B contains the groundwater sampling log and field equipment calibration sheets.

Following the purging activities, groundwater samples were collected from BH-TMW-1 and BH-TMW-2 using poly-tubing connected to a peristaltic pump. The collected samples were placed into laboratory-supplied bottles, stored on wet ice, and submitted to a State of Florida approved analytical laboratory, Pace Analytical Services in Ormond Beach, Florida. Pace is a NELAP-certified laboratory, Number E83079.

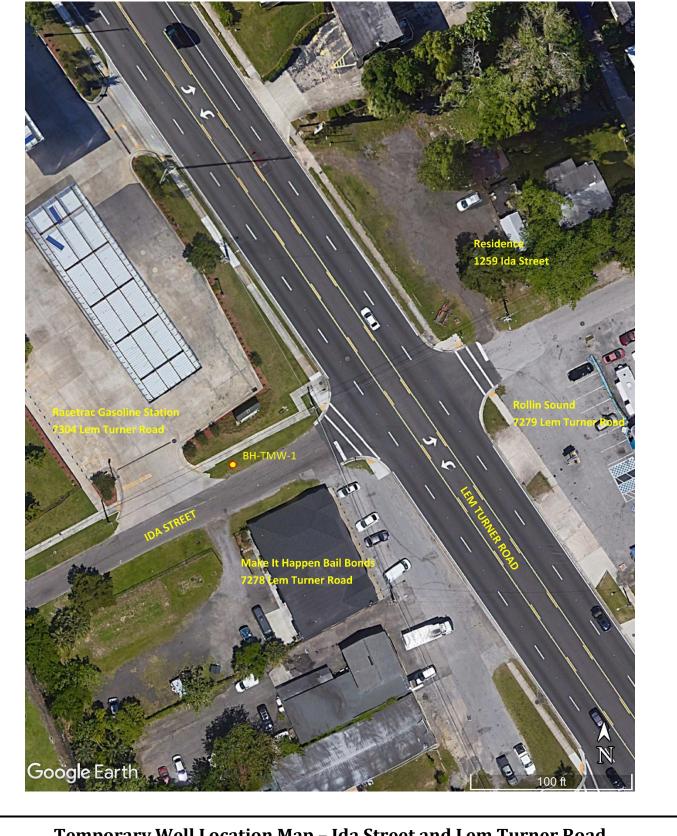
The groundwater samples were analyzed for the presence of Volatile Organic Compounds by EPA Method 8260, Polynuclear Aromatic Hydrocarbons (PAH) by EPA Method 8270, and the metals Arsenic, Chromium, Cadmium, and Lead by EPA Method 6010. Field filtered samples were collected for dissolved metal analysis in case turbidity interference is encountered. Copies of the groundwater analytical results are provided in Appendix C.

The results from the laboratory analysis of the groundwater samples indicated the tested analytes did not exhibit concentrations exceeding the Groundwater or Surface Water Cleanup Target Levels defined in Chapter 62-777, Florida Administrative Code.

6.0 CONCLUSIONS AND PERMIT REQUEST


The results of laboratory analyses of groundwater samples collected indicate that there have been no impacts to groundwater in the areas sampled.

Under Chapter 62-621.300(2) FAC when applying the NOI to use the generic permit, it will be noted that the review of regulatory CLM database information indicated no Waste Cleanup facilities were identified as contaminated within 500 feet of the proposed project alignment. Based on the groundwater sampling and analytical results presented, it appears no contaminants of concern are present in the groundwater of the proposed HDD crossing locations above surface water criteria defined in Chapter 62-302.530 FAC. Therefore, a NOI request for the use of the Generic Permit for the Discharge of Groundwater from Dewatering Operations, February 2015, FAC 62-621.300(2) is applicable. A copy of the NOI application is provided include in Appendix D. However, the acquisition of a dewatering permit is not necessary if the dewatering plan includes the discharge of dewatering effluent into a JEA wastewater treatment system.


If the proposed area of dewatering is anticipated for a construction activity exceeding 1 acre in size, then MAE recommends the construction contractor acquire the dewatering permit as part of the Construction General Permit (CGP). The dewatering permit will not add any additional cost to the CGP, provided it is applied for at the time of its CGP application. The development of dewatering Best Management Practices (BMPs) will still be required prior to initiation of the dewatering operation, as per FAC 62-621.300(2).

Following the commencement of dewatering operations, per Chapter 62-621.300(2) FAC, BMPs, developed by the dewatering contractor, must be adhered to including record-keeping, and collection of effluent samples as required. Please be advised that the FDEP regulations state that the permittee is ultimately responsible for discharges to the waters of the State.

Figures

Project Manager: Drawn by:	PRM	Project No.	0006-0033		3728 PHILIPS HIGHWAY. – SUITE 208• JACKSONVILLE, FLORIDA 32207	SITE LOCATION MAP	FIG NO.
Checked by:	IVICV	File Name:	AS SHOWN 0006-0033.BLP		PH. (904) 519-6990 • FAX (904) 519-6992 • www.MeskelEngineering.com	JEA BEVERLY HILLS SEPTIC TANK PHASE OUT	
Approved by:	WIM	Date:	11/1/2019	Meskel & Associates Engineering		PROJECT JACKSONVILLE, FLORIDA	∥ ┸

Temporary Well Location Map – Ida Street and Lem Turner Road

PREPARED BY	
Meskel & Associates Engineering Geotechnical r Environmental r Inspection r Testing	
PREPARED FOR	
England Thims & Miller	

PROJECT NAME								
JEA Beverly Hills Septic Tank Phase Out								
Jacksonville, Flo	rida							
REFERERENCE	SCALE							
Google Earth 2019	As Shown							
MAE PROJECT NO.	FIGURE NO.							
0006-0003	2							

Temporary Well Location Map – Oriole Street and Edgewood Avenue

PREPARED BY	PROJECT NAME						
	JEA Beverly Hills Septic Tank Phase Out Jacksonville, Florida						
Meskel & Associates Engineering	REFERERENCE	SCALE					
Geotechnical r Environmental r Inspection r Testing	Google Earth 2019	As Shown					
PREPARED FOR	MAE PROJECT NO.	FIGURE NO.					
England Thims & Miller	0006-0003	3					

Appendix A

BORING LOG

													ge 1 of	
Boring	g/Well N	Jumber	r:			Permit Number:					FDEP Facil	ity Iden	tificati	on Number:
G		BH	-TMW-1			NA Borehole Start Date: 10/10/10 Borehole Start Tir						NA	_	
Site Name:									10/10/19	Borehole Start 7		9:25	✓ A	
			Septic Ta	ank Pha	se Out		End Da		10/10/19	End T		9:45	✓ A	M PM
	onmenta			nonring		Geolog	ist's Name		ovideon D.C		Field Engin			
	ng Comp		ites Engi	neening		nt Thick	cness (incl		avidson, P.G. Borehole Diam	ueter (inches).		rehole		na, P.E.
		•	rilling & T	esting	i u venne		one	105).	Borenoie Dian	1.25'	100	renore	•	15
Drillir	ng Metho	od(s):		Apparen	t Borehol	e DTW (in feet	Me	asured Well DTW	/ (in feet after	OVA (list m	nodel ar	nd chec	k type):
Han	d Auge	r/Dire	ct Push	from so	oil moistu	re conten	nt): 4	W	ater recharges in	well): 4	None	9		FID PID
Dispo	sition of	Drill (Cuttings [check m	ethod(s)]:	D	rum	 Spread 	Backfill	Stoc	kpile		Other
(descr	ibe if ot	her or	multiple i	tems are	checked	<i>l):</i>								
Boreh	ole Com	pletior	n (check o	ne):	✓	Well	Grou	ıt	Bentonite	Backfil		Other (d	lescribe	e)
							1						1	
ŝ	Sa In	Sam	(pe	Uni	Fi		D					U	Moisture Content	Lab Soil and Groundwater
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	(e Description sed on USCS, odo		USCS Symbol	sture	Samples (list
e Ty	: Dep ıl (fe	Reco hes)	Blow inch	ed O	4 O V	OVA	(fee	(inciu		ther remarks)	rs, stannig,	Sym	Cor	sample number and depth or
pe	oth et)	very	's les)	VA	VA	F	t)					bol	itent	temporary screen
								0-5' FIN	NE SAND; dark	grey to medium	grey to			interval)
HA							1	mediun	n brown; no odo	ors or staining		SP	D	
												SP	D	
							2					55		
												SP	м	
							3	Croups	lwater at 4 feet	blo				
							4	Ground	iwalei al 4 ieel	DIS		SP	w	
							4							
							5					SP	S	
							┢─────	5'-6' CL	AYEY SAND; li	ght grey; no odo	rs or staining			
DP		60"					6					SC	S	
									CLAY; mottled o y; no odors or s	range and light g	rey; low	CL	s	
							7	plasicit		laining		0L	3	
												CL	s	
							8							
												CL	s	
							9							
							10					CL	S	
							┢─────			wn; medium plac	iticity; no			
DP		48"					11	odors c	or staining			CL	S	
												CL	s	
							12						5	

Sample Type Codes: PH = Post Hole; HA = Hand Auger; SS = Split Spoon; ST = Shelby Tube; DP = Direct Push; SC = Sonic Core; DC = Drill Cuttings Moisture Content Codes: D = Dry; M = Moist; W = Wet; S = Saturated

BORING LOG

												Pag	ge 2 of	2
Borin							Borehole			10/10/19				
 	BH-1	MW-1						JEA Beverly Hills				End Da	te:	10/10/19
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)		de grain size based and othe	er remarks)		USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
									CLAY; light brown r staining	; medium plasticit	ty; no	CL	S	
							14					CL	S	
							15	End bo	ring BH-TMW-1 to	15 feet bls		CL	S	
							16		g + to					
							17							
							18							
							19							
							20							
							21							
							22							
							23							
							25							
							26							
							27							
							28							
							29							
							30		ST = Shelby Tube:					

Sample Type Codes: **PH** = Post Hole; **HA** = Hand Auger; **SS** = Split Spoon; **ST** = Shelby Tube; **DP** = Direct Push; **SC** = Sonic Core; **DC** = Drill Cuttings Moisture Content Codes: $\mathbf{D} = Dry$; $\mathbf{M} = Moist$; $\mathbf{W} = Wet$; $\mathbf{S} = Saturated$

WELL CONSTRUCTION AND DEVELOPMENT LOG

			W	ELL C	CONS	TRUCTI	ON !	DATA				
Well Number:		Site Nan	ne:				······	FDEP Facility I.D. Numb	ber:	Well II	nstall	Date(s):
BH-TMW-1		i	JEA Bever	ly Hills S	eptic Pl	hase Out	· · · · ·				10/10	0/2019
Well Location and Type ((check ar	ppropriate	boxes):	Well Pu	rpose:	Perched	Monit	oring	Well	Install	Meth	od:
On-Site		Right-of-V	Way					r-Table) Monitoring r Deep Monitoring			irect F	
Above Grade (AG)	· /	Flush-to-	Grade					r Other (describe)	Surfa	ice Cas	ing In	stall Method:
If AG, list feet of riser above	e land su	rface:									PVC	2
Borehole Depth	Well D	epth	Borehole I	Diameter	Manho	ole Diameter		Well Pad Size:				
(feet): 15	(feet):	13	(inches):	3	(inches)	s): 8	3	feet	by	2	feet	ļ
Riser Diameter and Mater	rial:		ser/Screen	✓ Flush-	-Threade	;d		Riser Length: 3				
1" PVC		Co	onnections:	Other	(describ	<i>i</i> e)		from 0	fee	t to	3	feet
Screen Diameter and Mat	terial:			Screen S	Slot Size			Screen Length: 10	feet			
1"	" PVC				0.0	.010"		from 3	fee	t to	13	feet
1 st Surface Casing Materi	ial:			1 st Surfa	1 st Surface Casing I.D. (inches):			1 st Surface Casing Length	h:		feet	
also check: Perman	nent	Te	emporary				 	from 0	fee	t to		feet
2 nd Surface Casing Mater	ial:			2 nd Surf	ace Casi	ing I.D. (inch	ies):	2 nd Surface Casing Lengt	th:		feet	
also check: Perman	nent	Te	emporary					from 0	fee	t to		feet
3 rd Surface Casing Materi	ial:			3 rd Surfa	ace Casir	ng I.D. (inch	es):	3 rd Surface Casing Lengt				
also check: Perman	nent	Ter	mporary					from 0	fee	et to		feet
Filter Pack Material and S	Size:	Prepacke	ed Filter Aro	ound Scree	en (checl	k one):		Filter Pack Length:		10	feet	
20/30 Sand		✓ Ye	÷S		0		 	from 3				feet
Filter Pack Seal Material	and			30/60 Fine	o Sand			Filter Pack Seal Length:		2	feet	
Size:					e Sanu			from 1			3	feet
Surface Seal Material:				Neat Ce	ment			Surface Seal Length:		1	feet	
			Neal Oc	Veat Cement			from 0	fee	et to	1	feet	

WELL DEVELOPMENT DATA										
Well Development Date:	Well	Development Meth	od (checl	k one): Surge/P	ump 🔽 Pump	Compressed Air				
10/10/19		Other (describe)								
Development Pump Type (check):	Centrif	ugal 🗌 Peristal	tic	Depth to Groundwater (before developing in feet):						
Submersible Other (describe)				4						
Pumping Rate (gallons per minute): 0.7		Maximum Drawdo Development (feet		Froundwater During NA	Well Purged Dry (check one):				
Pumping Condition (check one): To		elopment Water (gallons):		Development Duration (minutes): 30	Development Wate (check one):	er Drummed Yes V				
Water Appearance (color and odor) At S	tart of E	Development:	Water Appearance (color and odor) At End of Development:							
Brown cl	oudy			Clear						

WELL CONSTRUCTION OR DEVELOPMENT REMARKS

Temporary monitoring well BH-TMW-1 installed in the right-of-way northwest of the intersection of Ida Street and Lem Turner Road

BORING LOG

Boring/Well Number: Permit Number: FDEP Facility Identification Number BH-TMW-2 NA NA Site Name: Borehole Start Date: 10/10/19 Borehole Start Time: 11:10 AM II JEA Beverly Hills Septic Tank Phase Out End Date: 10/10/19 Borehole Start Time: 11:35 AM II Environmental Contractor: Geologist's Name: Field Engineer's Name: Gabriel Pastrana, P.E. Drilling Company: Pavement Thickness (inches): Borehole Diameter (inches): Borehole Depth (feet): Transamerican Drilling & Testing None 1.25' 15	M
Site Name: Borehole Start Date: 10/10/19 Borehole Start Time: 11:10 Image: Max and the mail of the mail	
JEA Beverly Hills Septic Tank Phase Out End Date: 10/10/19 End Time: 11:35 Image: AM	
Environmental Contractor: Geologist's Name: Field Engineer's Name: Meskel & Associates Engineering PLLC Scott Davidson, P.G. Gabriel Pastrana, P.E. Drilling Company: Pavement Thickness (inches): Borehole Diameter (inches): Borehole Depth (feet):	M
Meskel & Associates Engineering PLLCScott Davidson, P.G.Gabriel Pastrana, P.E.Drilling Company:Pavement Thickness (inches):Borehole Diameter (inches):Borehole Depth (feet):	
Drilling Company: Pavement Thickness (inches): Borehole Diameter (inches): Borehole Depth (feet):	
Drilling Method(s): Apparent Borehole DTW (in feet Measured Well DTW (in feet after OVA (list model and check type):	
Hand Auger/Direct Push from soil moisture content): 7 water recharges in well): 7 None FID	PID
Disposition of Drill Cuttings [check method(s)]: Drum 🔽 Spread 🗌 Backfill 🗌 Stockpile 🗌 Other	
(describe if other or multiple items are checked):	
Borehole Completion (check one): 🔽 Well 🗌 Grout 🗌 Bentonite 🗌 Backfill 🗌 Other (describe)	
Lab So	land
Sample Recovery Unfiltered OVA Vet OVA Depth (feet) Sample Description USCS Symbol Sample and other remarks) Sample Depth Interval (feet) Interval (feet) Interval (feet) Interval (feet) Interval (feet)	
ample Type SPT filt Itered Open Sample Description Sample Sample Sample Sample Interval (inches) (inches) O O (inches) (inches) (inches)	
Sample Blows Unfiltered OVA Depth (feet) Sample Description USCS Symbol Sample Sample Sample Sample Sample Sample Type Sample Type Sample Recover OVA Sample Description Sample	
$\tilde{\mathbf{C}}$ $\tilde{\mathbf{C}$ <td></td>	
0-12' FINE SAND; light to medium brown; no odors	ui)
HA or staining SP D	
SP D	
3 SP D	
4 SP D	
5 SP D	
DP 48" SP M	
Groundwater at 7 feet bls	
SP W	
SP S	
9 SP S	
DP 48" SP S	
12 SP S	

Sample Type Codes: PH = Post Hole; HA = Hand Auger; SS = Split Spoon; ST = Shelby Tube; DP = Direct Push; SC = Sonic Core; DC = Drill Cuttings Moisture Content Codes: D = Dry; M = Moist; W = Wet; S = Saturated

BORING LOG

												Pag	ge 2 of	2
Borin	g/Well N			FDEP F	Facility I	dentifica	tion Num	ber:	Site Name:		Borehole			10/10/19
	BH-1	MW-2						1	JEA Bev	verly Hills		End Da	te:	10/10/19
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)		de grain size based and othe	er remarks)		USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
								12'-15' or stain	FINE SAND; light ing	to medium brown	; no odors	SP	S	
							14					SP	S	
							15	End bo	ring BH-TMW-2 to	15 feet his		SP	S	
							16			. 10 1000 010				
							17							
							18							
							19							
							20							
							21							
							22							
							23							
							25							
							26							
							27							
							28							
							29							
							30		ST = Shelby Tube:					

Sample Type Codes: **PH** = Post Hole; **HA** = Hand Auger; **SS** = Split Spoon; **ST** = Shelby Tube; **DP** = Direct Push; **SC** = Sonic Core; **DC** = Drill Cuttings Moisture Content Codes: $\mathbf{D} = Dry$; $\mathbf{M} = Moist$; $\mathbf{W} = Wet$; $\mathbf{S} = Saturated$

WELL CONSTRUCTION AND DEVELOPMENT LOG

			W	'ELL (CONS	TRUCT	ION	DATA				
Well Number:		Site Nam	ne:			<u>,</u>		FDEP Facility I.D. Num	ber:	Well I	nstall	Date(s):
BH-TMW-2		I	JEA Bever	ly Hills S	eptic P	hase Out	 				10/10	0/2019
Well Location and Type ((check a	ppropriate	boxes):	Well Pu	rpose:	Perche	d Monito	oring	Well	l Install	Meth	od:
On-Site		Right-of-V	Way					r-Table) Monitoring r Deep Monitoring			irect F	
Above Grade (AG)	V.	Flush-to-0	Grade					r Other (describe)	Surf	ace Cas	sing In	stall Method:
If AG, list feet of riser above	e land su	rface:									PVC	2
Borehole Depth	Well D	Depth	Borehole I	Diameter	Manho	ole Diameter	ſ	Well Pad Size:				
(feet): 15	(feet):	15	(inches):	3	(inches	s):	8	<u>2</u> feet	by	2	feet	
Riser Diameter and Mater	rial:		ser/Screen	✓ Flush-	-Threade	d		Riser Length: 5	feet			
1" PVC		Cor	nnections:	Other	(describ)e)		from 0	-	et to	5	feet
Screen Diameter and Mat	terial:			Screen S	Slot Size	»:		Screen Length: 10	feet		······	
1"	1" PVC				0.0	.010"		from 5	fee	et to	15	feet
1 st Surface Casing Materi	ial:			1 st Surfa	1 st Surface Casing I.D. (inches):			1 st Surface Casing Lengt	h:		feet	
also check: Permar	nent	Te	mporary					from 0	fee	et to		feet
2 nd Surface Casing Mater	rial:			2 nd Surf	ace Casi	ing I.D. (inc	ches):	2 nd Surface Casing Leng				
also check: Permar	nent	Te	mporary					from 0	fee	et to		feet
3 rd Surface Casing Mater	ial:			3 rd Surfa	ace Casi	ing I.D. (inc	hes):	3 rd Surface Casing Lengt	th:		feet	
also check: Perma			mporary					from 0				feet
Filter Pack Material and S	Size:	Prepacke	ed Filter Aro	ound Scree	en (chec!	k one):		Filter Pack Length:		10	feet	
20/30 Sand		✓ Ye	'S	N	0		ļ	from 5	fee	et to	15	feet
Filter Pack Seal Material	and			30/60 Fine	o Sand			Filter Pack Seal Length:		2	feet	
Size:					3 Sanu			from 3	fee	et to	5	feet
Surface Seal Material:				Neat Ce	mont			Surface Seal Length:		3	feet	
				Neal Ce	IIICIII		I	from 0	fee	et to	3	feet

		WELL DEVEL	OPMENT DAT	A			
Well Development Date:	Well	Development Method (ch	eck one): Su	rge/Pump	Pump	Comp	ressed Air
10/10/19		Other (describe)					
Development Pump Type (check):	Centrif	fugal Peristaltic	Depth to Groundwa	ater (before	developing in 1	feet):	
Pumping Rate (gallons per minute): 0.7	Maximum Drawdown of Development (feet):	Groundwater During NA					
		elopment Water (gallons): 35	Development Durat (minutes): 5	11	elopment Water ck one):	Drummed	V No
Water Appearance (color and odor) At S	tart of D	Development:	Water Appearance	(color and	odor) At End o	f Developmer	nt:
Brown cl	oudy			В	Brown cloudy		

WELL CONSTRUCTION OR DEVELOPMENT REMARKS

Temporary monitoring well BH-TMW-2 installed in the right-of-way southwest of the intersection of Oriole Street and Edgewood Avenue

Appendix B

Form FD 9000-24 **GROUNDWATER SAMPLING LOG**

SITE	200 0-	LCOL	[].		SI	IE CATION: L	En TU	Inn	nRDI	IDA	9 S	Г.	
	IGA BE			SAMPLE		-Thu			N N)/29/2		
WELL NO:	1317-	TMW.	-)			SING DA							
				10/171	L SCREEN		STAT	IC DE	PTH	P	URGE PL	IMP TYPE	
WELL	d 11	TUBING			TH: 7 fe	et to 13 fe	et TOW	ATER	(feet): 334		R BAILER		
DIAMETER	R (inches):		ER (inches):	L WELL DEP	TH - STA	TIC DEPTH T	O WATER)	X V	WELL CAPACIT	Y			
	t if applicable)	I WELL TO			feet - 3.				0.04	aallons	foot =	0,30	gallons
FOUIDME	NT VOLUME PL	IRGE: 1 EQU		= PUMP VOL	UME + (TUE	BING CAPACIT	TY X	TUB	BING LENGTH)	+ FLOW	CELL VOI	LUME	guilerie
(only fill ou	t if applicable)				allons + (ns/foot X		feet)	+	g	allons =	gallons
INITIAL PL	JMP OR TUBIN	G	FINAL PUM	P OR TUBINO	G	PURGIN	G	1.0	PURGING			AL VOLUN	
	WELL (feet):	5.34	DEPTH IN V	VELL (feet):	5.34	INITIATE	DAT:	103	ENDED AT: DISSOLVED		PUR	GED (gallo	ins):
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle unit µmhos/cr or µS/cn	ts) n	OXYGEN (circle units) (ng/L)or % saturation	TURBI (NTU	Js) (COLOR (describe)	ODOR (describe)
1411	030	0.90	010		668	28.01	615		1.68	62.	1 C	Lappy.	rever
	0.20	1.00	0.10		662	27.99	633		121	CG	3. 2 (in	NONE
1413	0.20	1.20	010		669	7792	634	1	1.18	69	10 4	oln -	pan
1415	0,00	1-00	0.12										
									and the second				
	PACITY (Gallor	Der Footh:	0.75" - 0.02	1" = 0.04;	1.25" = 0.0)6; 2" = 0.1	6: 3 " = 0	0.37:	4" = 0.65;	5" = 1.02	; 6" = 1	1.47; 12	2" = 5.88
TUBING I	NSIDE DIA. CA	PACITY (Gal./	Ft.): 1/8" = 0.	0006; 3/16	" = 0.0014;	1/4" = 0.002	26; 5/16 "	' = 0.0			1/2" = 0.0		3" = 0.016
PURGING	EQUIPMENT (CODES: B	= Bailer; I	BP = Bladder	1	ESP = Electric		e Pum	ip; PP = Pe	eristaltic F	Pump;	O = Othe	er (Specify)
						PLING DA	ATA		r				(
	BY (PRINT) / A			SAMPLER(S) SIGNALUH	(E(S):			SAMPLING	r.I.J.i	S/	AMPLING	1420
Gabe	Pastrana	/ MAE		TUBING									<u>ΓΥ Ο</u> E: <u>1</u> μm
	R TUBING WELL (feet):	5.34		MATERIAL C	ODE PE	S			FILTERED: M n Equipment Ty	N pe:	FI	LIER SIZI	ε. <u>ι</u> μιι
			IP Y N	-	TUBING		replaced)		DUPLICATE:	Y	N]	
	CONTAMINATI			9		RESERVATIO			INTENDE		SAMPL		SAMPLE PUMP
	IPLE CONTAIN	ER SPECIFIC		PRESERVA		TOTAL VOL		IAL	ANALYSIS AI	ND/OR	EQUIPM	/IENT	FLOW RATE
SAMPLE ID CODE	# CONTAINERS	CODE	VOLUME	USED		ED IN FIELD (mL) p	Н	METHO EPA 8260 (BT		COD		(mL per minute) <90
	3	CG	40 mL	HCI		-		:2	EPA 8260 (B EPA 8270 (AP		<90
	1	AG	250 mL	-		-		-					
	2	PE	250 mL	HNO3		-		:2	RCRA 4 M	etais	AP		<90
											an a		
REMARK	S:	<u> </u>											
SI	yeves the	ABIDHA.	~										
	AL CODES:	AG = Amber		= Clear Glass	PE = Po	olyethylene;	PP = Poly	propyle			= Teflon;		ner (Specify)
	NG EQUIPMEN	CODES:	APP = After Pe	eristaltic Pump); B = B	ailer; BP =	= Bladder Pu	ump;	ESP = Electr Gravity Drain);		ersible Pu Other (Spe		
	1. The above		RFPP = Rever	se Flow Perist	tion roqui							,,	
NOTES:	1. The above	ao not con	sutule all of		or LACT TH	DEE CONSECU	ITIVE DEAL	DINGS	(SEE ES 2212	SECTIO	ON 3)		

2. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u> **pH:** \pm 0.2 units **Temperature:** \pm 0.2 °C **Specific Conductance:** \pm 5% **Dissolved Oxygen:** all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) **Turbidity:** all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

Form FD 9000-24 **GROUNDWATER SAMPLING LOG**

SITE A	1				SI	TE	EDIC	voon Av	6/0	MAI	5 55
NAME: 3	EA B	WENM	itics						DATE: 10/2		
WELL NO:	BH-	mw.	-2	SAMPL	EID: BLA				DATE: TUIZ	512013	
						SING DA			DUDO	E PUMP TY	DE
WELL	@ !!	TUBING			ELL SCREEN EPTH: ∫ fe	INTERVAL .		ER (feet):	1		
DIAMETER	(inches): 2"		ER (inches):					WELL CAPACI	<u>г</u> ОКВ/ ТҮ	AILER. II	
	if applicable)	I WELL VOL	= (1017		feet -			10.04		- 0.3	gallons
FOLIPMEN	IT VOLUME PU	RGE: 1 EQU	IPMENT VOL.	= PUMP V	feet - DLUME + (TUE	ING CAPACI	TY X 1	TUBING LENGTH)	+ FLOW CEL	LVOLUME	gailons
(only fill out	if applicable)			=	gallons + (ns/foot X	feet)	+	gallons =	= gailons
INITIAL PU	MP OR TUBINO WELL (feet):	3 0 0	FINAL PUM	P OR TUBI	NG		-	PURGING		TOTAL VOL	
DEPTH IN	WELL (feet):	3.62	DEPTH IN V	VELL (feet)	8.6		G ED AT: 1337	DISSOLVED	1344	PURGED (g	allons):
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	OXYGEN (circle units) mg/ <u>P</u> or % saturation	TURBIDITY (NTUs)	(describ	e) (describe)
1340	0.80	0,80	0.601		5.80	27.77	125	0.24	800	Lich	of NONE
1342	0.20	1.00	0.10		5.73	27.90	123	ons	921	v	1 PUNE
1344	0.20	1.20	0.10		5.81	27.76	w	0,02	90.9	ч	perm
1346	0.20	1.40	0.13		583	27.67	120	0.21	915	00	NONE
							1				<u></u>
					4.05% 0.0	6: 2 " = 0.1	6; 3" = 0.37	/: 4 " = 0.65;	5" = 1.02;	6" = 1.47;	12" = 5.88
WELL CAP	PACITY (Gallon	s Per Foot): 0 PACITY (Gal./).75" = 0.02; Ft.): 1/8" = 0.0	1" = 0.04; 0006; 3/	1.25" = 0.0 16" = 0.0014;						5/8" = 0.016
	EQUIPMENT C			BP = Bladde	er Pump; L	ESP = Electric	Submersible F	Pump; PP = P	eristaltic Pump	$\mathbf{O} = \mathbf{O}$	ther (Specify)
					SAMF (S) SIGN	LING DA	ATA		de		
	BY (PRINT) / A Pastrana			SAWPLER				SAMPLING INITIATED A	T: 1346	SAMPLIN ENDED A	IT: 1351
	and the second se			TUBING	$-U^{-}$		FIEL	D-FILTERED: Y			IZE: <u>1</u> μm
PUMP OR DEPTH IN	WELL (feet):	262		MATERIAL	CODE: PE/	S		ation Equipment Ty			
FIELD DEC	CONTAMINATIO	DN: PUM			TUBING		replaced)	DUPLICATE	: Y	N	
SAM	PLE CONTAINE	R SPECIFIC	ATION		SAMPLE P	RESERVATIO	N				SAMPLE PUMP FLOW RATE
SAMPLE	#	MATERIAL	VOLUME	PRESERV		TOTAL VOL	FINAL	ANALYSIS A METHO		CODE	(mL per minute)
ID CODE	CONTAINERS 3	CODE CG	40 mL	USE		-	(mL) pH <2	EPA 8260 (B	TEX/M)	RFPP	<90
	1	AG	250 mL	-		_	-	EPA 8270	(PAH)	APP	<90
	2	PE	250 mL	HNC	3	_	<2	RCRA 4 M	letals	APP	<90
	-										
REMARKS	l S:	<u> </u>					<u>L</u>	l	and the second second second		
PLIM	NOS TUN	Dipli =	6.98 M	M							
MATERIA		AG = Amber		Clear Glas	ss; PE = Po	lyethylene;	PP = Polypro				Other (Specify)
SAMPLIN	G EQUIPMENT		APP = After Pe RFPP = Revers				 Bladder Pump Method (Tubi 	p; ESP = Elec ng Gravity Drain);	tric Submersib O = Other		
NOTES: 1	. The above					ed by Chap	ter 62-160, F	A.C.			

2. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u> pH: \pm 0.2 units **Temperature**: \pm 0.2 °C **Specific Conductance**: \pm 5% **Dissolved Oxygen**: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) **Turbidity**: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

Appendix C

Pace Analytical Services, LLC 8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

November 06, 2019

Mr. Scott A. Davidson, P.G. Meskel & Associates Engineering, Inc. 8936 Western Way Jacksonville, FL 32256

RE: Project: JEA BEVERLY HILL Pace Project No.: 35508497

Dear Mr. Davidson, P.G.:

Enclosed are the analytical results for sample(s) received by the laboratory on October 30, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Vorth S.R.

Todd Rea todd.rea@pacelabs.com (904) 903-7948 Project Manager

Enclosures

cc: Mr. Gabriel S. Pastrana, P.E., Pastrana Engineering & Environment, LLC

Pace Analytical Services, LLC 8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

CERTIFICATIONS

Project: JEA BEVERLY HILL Pace Project No.: 35508497

Ormond Beach Certification IDs	
8 East Tower Circle, Ormond Beach, FL 32174	Missouri Certification #: 236
Alaska DEC- CS/UST/LUST	Montana Certification #: Cert 0074
Alabama Certification #: 41320	Nebraska Certification: NE-OS-28-14
Arizona Certification# AZ0819	New Hampshire Certification #: 2958
Colorado Certification: FL NELAC Reciprocity	New Jersey Certification #: FL022
Connecticut Certification #: PH-0216	New York Certification #: 11608
Delaware Certification: FL NELAC Reciprocity	North Carolina Environmental Certificate #: 667
Florida Certification #: E83079	North Carolina Certification #: 12710
Georgia Certification #: 955	North Dakota Certification #: R-216
Guam Certification: FL NELAC Reciprocity	Oklahoma Certification #: D9947
Hawaii Certification: FL NELAC Reciprocity	Pennsylvania Certification #: 68-00547
Illinois Certification #: 200068	Puerto Rico Certification #: FL01264
Indiana Certification: FL NELAC Reciprocity	South Carolina Certification: #96042001
Kansas Certification #: E-10383	Tennessee Certification #: TN02974
Kentucky Certification #: 90050	Texas Certification: FL NELAC Reciprocity
Louisiana Certification #: FL NELAC Reciprocity	US Virgin Islands Certification: FL NELAC Reciprocity
Louisiana Environmental Certificate #: 05007	Virginia Environmental Certification #: 460165
Maryland Certification: #346	West Virginia Certification #: 9962C
Michigan Certification #: 9911	Wisconsin Certification #: 399079670
Mississippi Certification: FL NELAC Reciprocity	Wyoming (EPA Region 8): FL NELAC Reciprocity

SAMPLE SUMMARY

Project: JEA BEVERLY HILL

Pace Project No.: 35508497

Lab ID	Sample ID	Matrix	Date Collected	Date Received
35508497001	BH-TMW-1	Water	10/29/19 14:15	10/30/19 12:10
35508497002	BH-TMW-2	Water	10/29/19 13:46	10/30/19 12:10

SAMPLE ANALYTE COUNT

Project: JEA BEVERLY HILL Pace Project No.: 35508497

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
35508497001	BH-TMW-1	EPA 6020	AMS	4	PASI-O
		EPA 8270 by SIM	CB1	20	PASI-O
		EPA 8260	SK1	57	PASI-O
35508497002	BH-TMW-2	EPA 6020	AMS	4	PASI-O
		EPA 8270 by SIM	CB1	20	PASI-O
		EPA 8260	SK1	57	PASI-O

Project: JEA BEVERLY HILL

Pace Project No.: 35508497

Sample: BH-TMW-1	Lab ID:	35508497001	Collected	: 10/29/19	9 14:15	Received: 10/	30/19 12:10 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Arsenic	2.7	ug/L	1.0	0.50	1	10/31/19 06:27	10/31/19 15:16	7440-38-2	
Cadmium	0.050 U	ug/L	0.10	0.050	1	10/31/19 06:27	10/31/19 15:16	7440-43-9	
Chromium	0.74 I	ug/L	1.0	0.50	1	10/31/19 06:27	10/31/19 15:16	7440-47-3	
Lead	0.50 U	ug/L	1.0	0.50	1	10/31/19 06:27	10/31/19 15:16	7439-92-1	
8270 MSSV PAHLV by SIM	Analytical	Method: EPA 8	270 by SIM	Preparatio	on Meth	od: EPA 3510			
Acenaphthene	0.040 U	ug/L	0.50	0.040	1	11/01/19 10:23	11/02/19 16:08	83-32-9	
Acenaphthylene	0.030 U	ug/L	0.50	0.030	1	11/01/19 10:23	11/02/19 16:08	208-96-8	
Anthracene	0.043 U	ug/L	0.50	0.043	1	11/01/19 10:23	11/02/19 16:08	120-12-7	
Benzo(a)anthracene	0.055 U	ug/L	0.10	0.055	1	11/01/19 10:23	11/02/19 16:08	56-55-3	
Benzo(a)pyrene	0.12 U	ug/L	0.20	0.12	1	11/01/19 10:23	11/02/19 16:08	50-32-8	
Benzo(b)fluoranthene	0.027 U	ug/L	0.10	0.027	1	11/01/19 10:23	11/02/19 16:08	205-99-2	
Benzo(g,h,i)perylene	0.15 U	ug/L	0.50	0.15	1	11/01/19 10:23	11/02/19 16:08	191-24-2	
Benzo(k)fluoranthene	0.16 U	ug/L	0.50	0.16	1	11/01/19 10:23	11/02/19 16:08	207-08-9	
Chrysene	0.026 U	ug/L	0.50	0.026	1	11/01/19 10:23	11/02/19 16:08	218-01-9	
Dibenz(a,h)anthracene	0.13 U	ug/L	0.15	0.13	1	11/01/19 10:23	11/02/19 16:08	53-70-3	
Fluoranthene	0.018 U	ug/L	0.50	0.018	1	11/01/19 10:23	11/02/19 16:08		
Fluorene	0.088 U	ug/L	0.50	0.088	1	11/01/19 10:23	11/02/19 16:08		
Indeno(1,2,3-cd)pyrene	0.12 U	ug/L	0.15	0.12	1	11/01/19 10:23	11/02/19 16:08	193-39-5	
1-Methylnaphthalene	0.19 U	ug/L	2.0	0.19	1	11/01/19 10:23	11/02/19 16:08		
2-Methylnaphthalene	0.68 U	ug/L	2.0	0.68	1	11/01/19 10:23	11/02/19 16:08		
Naphthalene	0.29 U	ug/L	2.0	0.29	1	11/01/19 10:23	11/02/19 16:08		
Phenanthrene	0.16 U	ug/L	0.50	0.16	1	11/01/19 10:23	11/02/19 16:08		
Pyrene	0.032 U	ug/L	0.50	0.032	1	11/01/19 10:23	11/02/19 16:08		
Surrogates	0.002 0	0.g/ E	0.00	0.002	•	11/01/10 10:20	11/02/10 10:00	120 00 0	
2-Fluorobiphenyl (S)	65	%	38-92		1	11/01/19 10:23	11/02/19 16:08	321-60-8	
p-Terphenyl-d14 (S)	77	%	54-112		1	11/01/19 10:23	11/02/19 16:08		
8260 MSV	Analytical	Method: EPA 8							
	-			5.3	4		11/05/19 04:54	07.04.4	1(
Acetone	12.1 I	ug/L	20.0		1				J(v3)
Acetonitrile	24.5 U	ug/L	40.0	24.5	1		11/05/19 04:54		J(v2)
Benzene	0.10 U	ug/L	1.0	0.10	1		11/05/19 04:54		
Bromochloromethane	0.37 U	ug/L	1.0	0.37	1		11/05/19 04:54		
Bromodichloromethane	0.19 U	ug/L	0.60	0.19	1		11/05/19 04:54		
Bromoform	2.6 U	ug/L	3.0	2.6	1		11/05/19 04:54		
Bromomethane	4.0 U	ug/L	5.0	4.0	1		11/05/19 04:54		J(v2)
2-Butanone (MEK)	14.3	ug/L	10.0	5.0	1		11/05/19 04:54		
Carbon disulfide	0.45 U	ug/L	10.0	0.45	1		11/05/19 04:54		
Carbon tetrachloride	0.50 U	ug/L	3.0	0.50	1		11/05/19 04:54		
Chlorobenzene	0.50 U	ug/L	1.0	0.50	1		11/05/19 04:54		
Chloroethane	3.7 U	ug/L	10.0	3.7	1		11/05/19 04:54		
Chloroform	0.50 U	ug/L	1.0	0.50	1		11/05/19 04:54		
Chloromethane	0.97 U	ug/L	1.0	0.97	1		11/05/19 04:54		
1,2-Dibromo-3-chloropropane	1.9 U	ug/L	5.0	1.9	1		11/05/19 04:54		
Dibromochloromethane	0.45 U	ug/L	2.0	0.45	1		11/05/19 04:54		
1,2-Dibromoethane (EDB)	0.31 U	ug/L	1.0	0.31	1		11/05/19 04:54	106-93-4	

Project: JEA BEVERLY HILL

Pace Project No.: 35508497

Sample: BH-TMW-1	Lab ID:	35508497001	Collected	d: 10/29/19	9 14:15	Received: 1	0/30/19 12:10	Matrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytica	I Method: EPA 8	260						
Dibromomethane	0.68 U	ug/L	2.0	0.68	1		11/05/19 04:5	4 74-95-3	
1,2-Dichlorobenzene	0.50 U	ug/L	1.0	0.50	1		11/05/19 04:5	4 95-50-1	
1,4-Dichlorobenzene	0.50 U	ug/L	1.0	0.50	1		11/05/19 04:5	4 106-46-7	
trans-1,4-Dichloro-2-butene	2.5 U	ug/L	10.0	2.5	1		11/05/19 04:5	4 110-57-6	
1,1-Dichloroethane	0.34 U	ug/L	1.0	0.34	1		11/05/19 04:5	4 75-34-3	
1,2-Dichloroethane	0.50 U	ug/L	1.0	0.50	1		11/05/19 04:5	4 107-06-2	
1,2-Dichloroethene (Total)	0.27 U	ug/L	1.0	0.27	1		11/05/19 04:5	4 540-59-0	N2
1,1-Dichloroethene	0.50 U	ug/L	1.0	0.50	1		11/05/19 04:5	4 75-35-4	
cis-1,2-Dichloroethene	0.50 U	ug/L	1.0	0.50	1		11/05/19 04:5	4 156-59-2	
trans-1,2-Dichloroethene	0.50 U	ug/L	1.0	0.50	1		11/05/19 04:5	4 156-60-5	
1,2-Dichloropropane	0.23 U	ug/L	1.0	0.23	1		11/05/19 04:5	4 78-87-5	
cis-1,3-Dichloropropene	0.17 U	ug/L	0.50	0.17	1		11/05/19 04:5	4 10061-01-5	
trans-1,3-Dichloropropene	0.17 U	ug/L	0.50	0.17	1		11/05/19 04:5	4 10061-02-6	
Ethylbenzene	0.50 U	ug/L	1.0	0.50	1		11/05/19 04:5		
2-Hexanone	0.85 U	ug/L	10.0	0.85	1		11/05/19 04:5		
lodomethane	9.3 U	ug/L	10.0	9.3	1		11/05/19 04:5		J(v2)
Isopropylbenzene (Cumene)	0.50 U	ug/L	1.0	0.50	1		11/05/19 04:5		0(12)
Methylene Chloride	2.0 U	ug/L	5.0	2.0	1		11/05/19 04:5		
4-Methyl-2-pentanone (MIBK)	0.32 U	ug/L	10.0	0.32	1		11/05/19 04:5		
Methyl-tert-butyl ether	0.50 U	ug/L	2.0	0.50	1			4 1634-04-4	
Styrene	0.26 U	ug/L	1.0	0.26	1		11/05/19 04:5		
1,1,1,2-Tetrachloroethane	0.32 U	ug/L	1.0	0.20	1		11/05/19 04:5		
1,1,2,2-Tetrachloroethane	0.32 U	ug/L	0.50	0.32	1		11/05/19 04:5		
Tetrachloroethene	0.50 U	ug/L	1.0	0.20	1		11/05/19 04:5		
Toluene	0.50 U	-	1.0	0.50	1		11/05/19 04:5		
	0.30 U	ug/L	1.0	0.30	1				
1,1,1-Trichloroethane		ug/L					11/05/19 04:5		
1,1,2-Trichloroethane	0.30 U	ug/L	1.0	0.30	1		11/05/19 04:5		
Trichloroethene	0.50 U	ug/L	1.0	0.50	1		11/05/19 04:5		
Trichlorofluoromethane	0.35 U	ug/L	1.0	0.35	1		11/05/19 04:5		
1,2,3-Trichloropropane	1.1 U	ug/L	2.0	1.1	1		11/05/19 04:5		
1,2,4-Trimethylbenzene	0.50 U	ug/L	1.0	0.50	1		11/05/19 04:5		
1,3,5-Trimethylbenzene	0.50 U	ug/L	1.0	0.50	1		11/05/19 04:5		
Vinyl acetate	0.19 U	ug/L	10.0	0.19	1		11/05/19 04:5		
Vinyl chloride	0.50 U	ug/L	1.0	0.50	1		11/05/19 04:5		
Xylene (Total)	1.0 U	ug/L	5.0	1.0	1			4 1330-20-7	
m&p-Xylene	1.0 U	ug/L	4.0	1.0	1			4 179601-23-1	
o-Xylene	0.50 U	ug/L	1.0	0.50	1		11/05/19 04:5	4 95-47-6	
Surrogates	_								
4-Bromofluorobenzene (S)	94	%	70-130		1		11/05/19 04:5		
1,2-Dichloroethane-d4 (S)	100	%	70-130		1			4 17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		11/05/19 04:5	4 2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project: JEA BEVERLY HILL

Pace Project No.: 35508497

Sample: BH-TMW-2	Lab ID:	35508497002	Collected	: 10/29/19	9 13:46	Received: 10/	30/19 12:10 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Arsenic	0.50 U	ug/L	1.0	0.50	1	10/31/19 06:27	10/31/19 15:22	7440-38-2	
Cadmium	0.050 U	ug/L	0.10	0.050	1	10/31/19 06:27	10/31/19 15:22	7440-43-9	
Chromium	2.4	ug/L	1.0	0.50	1	10/31/19 06:27	10/31/19 15:22	7440-47-3	
Lead	1.2	ug/L	1.0	0.50	1	10/31/19 06:27	10/31/19 15:22	7439-92-1	
8270 MSSV PAHLV by SIM	Analytical	Method: EPA 8	270 by SIM	Preparatio	on Meth	od: EPA 3510			
Acenaphthene	0.040 U	ug/L	0.50	0.040	1	11/01/19 10:23	11/02/19 18:43	83-32-9	
Acenaphthylene	0.030 U	ug/L	0.50	0.030	1	11/01/19 10:23	11/02/19 18:43	208-96-8	
Anthracene	0.043 U	ug/L	0.50	0.043	1	11/01/19 10:23	11/02/19 18:43	120-12-7	
Benzo(a)anthracene	0.055 U	ug/L	0.10	0.055	1	11/01/19 10:23	11/02/19 18:43	56-55-3	
Benzo(a)pyrene	0.12 U	ug/L	0.20	0.12	1	11/01/19 10:23	11/02/19 18:43	50-32-8	
Benzo(b)fluoranthene	0.027 U	ug/L	0.10	0.027	1	11/01/19 10:23	11/02/19 18:43	205-99-2	
Benzo(g,h,i)perylene	0.15 U	ug/L	0.50	0.15	1	11/01/19 10:23	11/02/19 18:43	191-24-2	
Benzo(k)fluoranthene	0.16 U	ug/L	0.50	0.16	1	11/01/19 10:23	11/02/19 18:43	207-08-9	
Chrysene	0.026 U	ug/L	0.50	0.026	1	11/01/19 10:23	11/02/19 18:43	218-01-9	
Dibenz(a,h)anthracene	0.13 U	ug/L	0.15	0.13	1	11/01/19 10:23	11/02/19 18:43	53-70-3	
Fluoranthene	0.018 U	ug/L	0.50	0.018	1	11/01/19 10:23	11/02/19 18:43	206-44-0	
Fluorene	0.088 U	ug/L	0.50	0.088	1	11/01/19 10:23	11/02/19 18:43	86-73-7	
Indeno(1,2,3-cd)pyrene	0.12 U	ug/L	0.15	0.12	1	11/01/19 10:23	11/02/19 18:43	193-39-5	
1-Methylnaphthalene	0.19 U	ug/L	2.0	0.19	1	11/01/19 10:23	11/02/19 18:43		
2-Methylnaphthalene	0.68 U	ug/L	2.0	0.68	1	11/01/19 10:23	11/02/19 18:43		
Naphthalene	0.29 U	ug/L	2.0	0.29	1	11/01/19 10:23	11/02/19 18:43		
Phenanthrene	0.16 U	ug/L	0.50	0.16	1	11/01/19 10:23	11/02/19 18:43		
Pyrene	0.032 U	ug/L	0.50	0.032	1	11/01/19 10:23	11/02/19 18:43		
Surrogates		~g/ =	0.00	0.002				.20 00 0	
2-Fluorobiphenyl (S)	67	%	38-92		1	11/01/19 10:23	11/02/19 18:43	321-60-8	
p-Terphenyl-d14 (S)	75	%	54-112		1	11/01/19 10:23	11/02/19 18:43		
8260 MSV	Analytical	Method: EPA 8	260						
				5.0	4		44/04/40 07.44	07.04.4	1(0)
Acetone	5.3 U	ug/L	20.0	5.3	1		11/04/19 07:14		J(v2)
Acetonitrile	24.5 U	ug/L	40.0	24.5	1		11/04/19 07:14		J(v2)
Benzene	0.10 U	ug/L	1.0	0.10	1		11/04/19 07:14		
Bromochloromethane	0.37 U	ug/L	1.0	0.37	1		11/04/19 07:14		
Bromodichloromethane	0.19 U	ug/L	0.60	0.19	1		11/04/19 07:14		
Bromoform	2.6 U	ug/L	3.0	2.6	1		11/04/19 07:14		1 (0)
Bromomethane	4.0 U	ug/L	5.0	4.0	1		11/04/19 07:14		J(v2)
2-Butanone (MEK)	5.0 U	ug/L	10.0	5.0	1		11/04/19 07:14		J(v2)
Carbon disulfide	0.45 U	ug/L	10.0	0.45	1		11/04/19 07:14		
Carbon tetrachloride	0.50 U	ug/L	3.0	0.50	1		11/04/19 07:14		
Chlorobenzene	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:14		
Chloroethane	3.7 U	ug/L	10.0	3.7	1		11/04/19 07:14		
Chloroform	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:14		
Chloromethane	0.97 U	ug/L	1.0	0.97	1		11/04/19 07:14		J(v2)
1,2-Dibromo-3-chloropropane	1.9 U	ug/L	5.0	1.9	1		11/04/19 07:14		
Dibromochloromethane	0.45 U	ug/L	2.0	0.45	1		11/04/19 07:14		
1,2-Dibromoethane (EDB)	0.31 U	ug/L	1.0	0.31	1		11/04/19 07:14	106-93-4	

Project: JEA BEVERLY HILL

Pace Project No.: 35508497

Sample: BH-TMW-2	Lab ID:	35508497002	Collecte	d: 10/29/1	9 13:46	Received: 1	0/30/19 12:10 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytica	I Method: EPA 82	260						
Dibromomethane	0.68 U	ug/L	2.0	0.68	1		11/04/19 07:14	74-95-3	
1,2-Dichlorobenzene	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:14	95-50-1	
1,4-Dichlorobenzene	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:14	106-46-7	
trans-1,4-Dichloro-2-butene	2.5 U	ug/L	10.0	2.5	1		11/04/19 07:14	110-57-6	J(v2)
1,1-Dichloroethane	0.34 U	ug/L	1.0	0.34	1		11/04/19 07:14	75-34-3	
1,2-Dichloroethane	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:14	107-06-2	
1,2-Dichloroethene (Total)	0.27 U	ug/L	1.0	0.27	1		11/04/19 07:14	540-59-0	N2
1,1-Dichloroethene	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:14	75-35-4	
cis-1,2-Dichloroethene	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:14	156-59-2	
trans-1,2-Dichloroethene	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:14	156-60-5	
1,2-Dichloropropane	0.23 U	ug/L	1.0	0.23	1		11/04/19 07:14	78-87-5	
cis-1,3-Dichloropropene	0.17 U	ug/L	0.50	0.17	1		11/04/19 07:14	10061-01-5	
trans-1,3-Dichloropropene	0.17 U	ug/L	0.50	0.17	1		11/04/19 07:14	10061-02-6	
Ethylbenzene	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:14	100-41-4	
2-Hexanone	0.85 U	ug/L	10.0	0.85	1		11/04/19 07:14	591-78-6	
lodomethane	9.3 U	ug/L	10.0	9.3	1		11/04/19 07:14	74-88-4	J(L2), J(v2)
Isopropylbenzene (Cumene)	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:14	98-82-8	- ()
Methylene Chloride	2.0 U	ug/L	5.0	2.0	1		11/04/19 07:14	75-09-2	
4-Methyl-2-pentanone (MIBK)	0.32 U	ug/L	10.0	0.32	1		11/04/19 07:14		
Methyl-tert-butyl ether	0.50 U	ug/L	2.0	0.50	1		11/04/19 07:14	1634-04-4	
Styrene	0.26 U	ug/L	1.0	0.26	1		11/04/19 07:14	100-42-5	
1,1,1,2-Tetrachloroethane	0.32 U	ug/L	1.0	0.32	1		11/04/19 07:14	630-20-6	
1,1,2,2-Tetrachloroethane	0.20 U	ug/L	0.50	0.20	1		11/04/19 07:14	79-34-5	
Tetrachloroethene	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:14	127-18-4	
Toluene	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:14	108-88-3	
1,1,1-Trichloroethane	0.30 U	ug/L	1.0	0.30	1		11/04/19 07:14	71-55-6	
1,1,2-Trichloroethane	0.30 U	ug/L	1.0	0.30	1		11/04/19 07:14		
Trichloroethene	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:14	79-01-6	
Trichlorofluoromethane	0.35 U	ug/L	1.0	0.35	1		11/04/19 07:14	75-69-4	
1,2,3-Trichloropropane	1.1 U	ug/L	2.0	1.1	1		11/04/19 07:14	96-18-4	
1,2,4-Trimethylbenzene	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:14	95-63-6	
1,3,5-Trimethylbenzene	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:14	108-67-8	
Vinyl acetate	0.19 U	ug/L	10.0	0.19	1		11/04/19 07:14	108-05-4	
Vinyl chloride	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:14		
Xylene (Total)	1.0 U	ug/L	5.0	1.0	1		11/04/19 07:14		
m&p-Xylene	1.0 U	ug/L	4.0	1.0	1		11/04/19 07:14		
o-Xylene	0.50 U	ug/L	1.0	0.50	1		11/04/19 07:14		
Surrogates		0	-					-	
4-Bromofluorobenzene (S)	94	%	70-130		1		11/04/19 07:14	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%	70-130		1		11/04/19 07:14	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		11/04/19 07:14	2037-26-5	

Project: JEA BEVERLY HILL

Pace Project No.: 35508497

QC Batch:	583134	Analysis M	ethod:	EPA 6020				
QC Batch Method:	EPA 3010	Analysis De	escription:	6020 MET	Г			
Associated Lab Samp	les: 35508497001, 3550	3497002						
METHOD BLANK: 3	170484	Matriz	x: Water					
Associated Lab Samp	les: 35508497001, 3550	3497002						
		Blank	Reporting	9				
Parame	ter Un	ts Result	Limit	М	DL	Analyz	ed	Qualifiers
Arsenic	ug,	L 0.50 L	J	1.0	0.50	10/31/19	15:04	
Cadmium	ug	L 0.050 L	ס ר	.10	0.050	10/31/19	15:04	
Chromium	ug	L 0.50 L	J	1.0	0.50	10/31/19	15:04	
Lead	ug	L 0.50 L	J	1.0	0.50	10/31/19	15:04	
LABORATORY CONT	ROL SAMPLE: 3170485							
		Spike	LCS	LCS	9	6 Rec		
Parame	ter Un	ts Conc.	Result	% Rec	L	_imits	Qualifi	ers
Araania		<u> </u>			07	00 1 20		

Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	ug/L	50	48.5	97	80-120	
Cadmium	ug/L	5	5.3	105	80-120	
Chromium	ug/L	50	50.5	101	80-120	
Lead	ug/L	50	52.2	104	80-120	

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	ATE: 3170	486		3170487							
Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Arsenic	ug/L	1.5	50	50	50.8	50.6	99	98	75-125	0	20	
Cadmium	ug/L	0.050 U	5	5	4.8	4.8	96	96	75-125	0	20	
Chromium	ug/L	0.50 U	50	50	50.3	49.2	100	98	75-125	2	20	
Lead	ug/L	4.6	50	50	51.5	51.6	94	94	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: JEA BEVERLY HILL

Pace Project No.: 35508497

QC Batch: 583908 Analysis Method: EPA 8260 QC Batch Method: EPA 8260 Analysis Description: 8260 MSV Associated Lab Samples: 35508497002 METHOD BLANK: 3175041 Matrix: Water Associated Lab Samples: 35508497002 Blank Reporting MDL Parameter Result Limit Units Analyzed Qualifiers 1,1,1,2-Tetrachloroethane 0.32 U 1.0 0.32 11/03/19 21:56 ug/L 11/03/19 21:56 1 1 1-Trichloroethane ug/L 0.30 U 1.0 0.30 0.20 U 1,1,2,2-Tetrachloroethane ug/L 0.50 0.20 11/03/19 21:56 0.30 U 1,1,2-Trichloroethane ug/L 1.0 0.30 11/03/19 21:56 1,1-Dichloroethane ug/L 0.34 U 1.0 0.34 11/03/19 21:56 1,1-Dichloroethene ug/L 0.50 U 1.0 0.50 11/03/19 21:56 1,2,3-Trichloropropane ug/L 1.1 U 2.0 1.1 11/03/19 21:56 1,2,4-Trimethylbenzene ug/L 0.50 U 1.0 0.50 11/03/19 21:56 J(v2) 1,2-Dibromo-3-chloropropane ug/L 1.9 U 5.0 1.9 11/03/19 21:56 1.2-Dibromoethane (EDB) ug/L 0.31 U 1.0 0.31 11/03/19 21:56 1.2-Dichlorobenzene 0.50 U 1.0 0.50 11/03/19 21:56 ug/L 0.50 U 1.0 0.50 11/03/19 21:56 1,2-Dichloroethane ug/L ug/L 1.0 1,2-Dichloroethene (Total) 0.27 U 0.27 11/03/19 21:56 N2 1,2-Dichloropropane 0.23 U 1.0 0.23 11/03/19 21:56 ug/L 1,3,5-Trimethylbenzene 0.50 U 0.50 ug/L 1.0 11/03/19 21:56 1,4-Dichlorobenzene ug/L 0.50 U 1.0 0.50 11/03/19 21:56 2-Butanone (MEK) ug/L 5.0 U 10.0 5.0 11/03/19 21:56 J(v2) 2-Hexanone ug/L 0.85 U 10.0 0.85 11/03/19 21:56 4-Methyl-2-pentanone (MIBK) 0.32 U 10.0 0.32 11/03/19 21:56 ug/L 5.3 U 20.0 11/03/19 21:56 Acetone ug/L 5.3 J(v2) Acetonitrile 24.5 U 40.0 24.5 11/03/19 21:56 J(v2) ug/L Benzene 0.10 U 1.0 0.10 11/03/19 21:56 ug/L Bromochloromethane 0.37 U 1.0 0.37 11/03/19 21:56 ug/L Bromodichloromethane 0.19 U 0.60 0.19 11/03/19 21:56 ug/L Bromoform 2.6 U 3.0 2.6 11/03/19 21:56 ug/L Bromomethane ug/L 4.0 U 5.0 4.0 11/03/19 21:56 J(v2) Carbon disulfide ug/L 0.45 U 10.0 0.45 11/03/19 21:56 Carbon tetrachloride ug/L 0.50 U 3.0 0.50 11/03/19 21:56 Chlorobenzene 0.50 U 1.0 0.50 11/03/19 21:56 ug/L Chloroethane 3.7 U 10.0 11/03/19 21:56 ug/L 3.7 Chloroform ug/L 0.50 U 1.0 0.50 11/03/19 21:56 Chloromethane ug/L 0.97 U 1.0 0.97 11/03/19 21:56 J(v2) cis-1,2-Dichloroethene ug/L 0.50 U 1.0 0.50 11/03/19 21:56 cis-1,3-Dichloropropene ug/L 0 17 U 0.50 0 17 11/03/19 21:56 Dibromochloromethane ug/L 0.45 U 2.0 0.45 11/03/19 21:56 0.68 U Dibromomethane ug/L 2.0 0.68 11/03/19 21:56 Ethylbenzene 0.50 U 0.50 ug/L 1.0 11/03/19 21:56 10.0 Iodomethane ug/L 9.3 U 9.3 11/03/19 21:56 J(v2) Isopropylbenzene (Cumene) ug/L 0.50 U 1.0 0.50 11/03/19 21:56 m&p-Xylene ug/L 1.0 U 4.0 11/03/19 21:56 1.0 Methyl-tert-butyl ether 0.50 U 11/03/19 21:56 ug/L 2.0 0.50

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: JEA BEVERLY HILL

Pace Project No.: 35508497

METHOD BLANK: 3175041		Matrix:	Water			
Associated Lab Samples: 35508	497002					
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Methylene Chloride	ug/L	2.0 U	5.0	2.0	11/03/19 21:56	
o-Xylene	ug/L	0.50 U	1.0	0.50	11/03/19 21:56	
Styrene	ug/L	0.26 U	1.0	0.26	11/03/19 21:56	
Tetrachloroethene	ug/L	0.50 U	1.0	0.50	11/03/19 21:56	
Toluene	ug/L	0.50 U	1.0	0.50	11/03/19 21:56	
trans-1,2-Dichloroethene	ug/L	0.50 U	1.0	0.50	11/03/19 21:56	
trans-1,3-Dichloropropene	ug/L	0.17 U	0.50	0.17	11/03/19 21:56	
trans-1,4-Dichloro-2-butene	ug/L	2.5 U	10.0	2.5	11/03/19 21:56	J(v2)
Trichloroethene	ug/L	0.50 U	1.0	0.50	11/03/19 21:56	
Trichlorofluoromethane	ug/L	0.35 U	1.0	0.35	11/03/19 21:56	
Vinyl acetate	ug/L	0.19 U	10.0	0.19	11/03/19 21:56	
Vinyl chloride	ug/L	0.50 U	1.0	0.50	11/03/19 21:56	
Xylene (Total)	ug/L	1.0 U	5.0	1.0	11/03/19 21:56	
1,2-Dichloroethane-d4 (S)	%	102	70-130		11/03/19 21:56	
4-Bromofluorobenzene (S)	%	100	70-130		11/03/19 21:56	
Toluene-d8 (S)	%	104	70-130		11/03/19 21:56	

LABORATORY CONTROL SAMPLE: 3175042

Parameter Units Conc. Result % Rec Limits Qualifiers Tetrachloroethane ug/L 20 20.5 102 70-130 Tetrachloroethane ug/L 20 20.7 103 70-130 Tetrachloroethane ug/L 20 18.8 94 68-125 ichloroethane ug/L 20 19.2 96 70-130 hloroethane ug/L 20 19.7 99 70-130 hloroethane ug/L 20 19.3 96 66-133 ichloropropane ug/L 20 19.8 99 70-130 ichloropropane ug/L 20 19.8 99 70-130 ichloropropane ug/L 20 19.8 99 70-130 ichoroptopane ug/L 20 19.8 99 70-130 ichoroptopane ug/L 20 19.7 84 70-130 ichoroptopane ug/L 20 19.7
ichloroethaneug/L2020.710370-130Tetrachloroethaneug/L2018.89468-125ichloroethaneug/L2019.29670-130hloroethaneug/L2019.79970-130hloroethaneug/L2019.39666-133ichloropropaneug/L2017.99062-127imethylbenzeneug/L2019.89970-130omo-3-chloropropaneug/L2016.48245-137omoethane (EDB)ug/L2019.19670-130uloroethaneug/L2019.19670-130hloroptopaneug/L2019.19670-130hloroptopaneug/L2019.19670-130hloroptopaneug/L2019.78470-130hloroptopaneug/L2019.29670-130hloroptopaneug/L2019.79870-130hloroptopaneug/L2019.79870-130hloroptopaneug/L2019.79870-130hloroptopaneug/L2018.89470-130hloroptopaneug/L2018.89470-130hloroptopaneug/L2018.89470-130hloroptopaneug/L2018.89470-130hloroptopaneug/L2018.8
Tetrachloroethaneug/L2018.89468-125ichloroethaneug/L2019.29670-130hloroethaneug/L2019.79970-130hloroetheneug/L2019.39666-133ichloropropaneug/L2017.99062-127imethylbenzeneug/L2019.89970-130romo-3-chloropropaneug/L2016.48245-137romoethane (EDB)ug/L2019.89970-130hloroethaneug/L2019.89970-130hloroethaneug/L2019.89970-130hloroethaneug/L2019.89970-130hloroethaneug/L2019.19670-130hloroethaneug/L2019.19670-130hloroethaneug/L2019.29670-130hloroethene (Total)ug/L2019.79870-130hloroptopaneug/L2019.79870-130hlorobenzeneug/L2018.89470-130hlorobenzeneug/L2018.89470-130hlorobenzeneug/L2018.89470-130hlorobenzeneug/L2018.89470-130hlorobenzeneug/L2018.89470-130hlorobenzeneug/L4030.7 <t< td=""></t<>
ichloroethaneug/L2019.29670-130hloroethaneug/L2019.79970-130hloroetheneug/L2019.39666-133ichloropropaneug/L2017.99062-127imethylbenzeneug/L2019.89970-130romo-3-chloropropaneug/L2019.89970-130romo-3-chloropropaneug/L2019.89970-130romoethane (EDB)ug/L2019.19670-130hloroethaneug/L2016.78470-130hloroethaneug/L2019.29670-130hloroethaneug/L2019.79870-130hloroethaneug/L2019.79870-130hloroethene (Total)ug/L2019.79870-130hloroptopaneug/L2019.79870-130hloroetheneug/L2018.89470-130hloroetheneug/L2018.89470-130hlorobenzeneug/L4030.77747-143 J(v3)
Noroethaneug/L2019.79970-130nloroetheneug/L2019.39666-133ichloropropaneug/L2017.99062-127imethylbenzeneug/L2019.89970-130romo-3-chloropropaneug/L2016.48245-137romoethane (EDB)ug/L2019.89970-130nloroethaneug/L2019.89970-130nlorobenzeneug/L2019.19670-130nloroethaneug/L2016.78470-130nloroethaneug/L2019.29670-130nloroethene (Total)ug/L2019.79870-130nloropaneug/L2019.79870-130nlorobenzeneug/L2018.89470-130nlorobenzeneug/L4030.77747-143 J(v3)
Noroetheneug/L2019.39666-133ichloropropaneug/L2017.99062-127imethylbenzeneug/L2019.89970-130romo-3-chloropropaneug/L2016.48245-137romoethane (EDB)ug/L2019.89970-130noroethane (EDB)ug/L2019.19670-130noroethaneug/L2016.78470-130noroethaneug/L2019.29670-130noroethene (Total)ug/L2019.79870-130noroptopaneug/L2019.79870-130noroethene(Total)ug/L2018.89470-130noroethene(Total)ug/L4030.77747-143 J(v3)
ichloropropaneug/L2017.99062-127imethylbenzeneug/L2019.89970-130romo-3-chloropropaneug/L2016.48245-137romoethane (EDB)ug/L2019.89970-130hlorobenzeneug/L2019.19670-130hlorobenzeneug/L2016.78470-130hlorobethaneug/L2016.78470-130hlorobethaneug/L2019.29670-130hloroptopaneug/L2019.79870-130hlorobenzeneug/L2018.89470-130one (MEK)ug/L4030.77747-143 J(v3)
imethylbenzeneug/L2019.89970-130iomo-3-chloropropaneug/L2016.48245-137iomoethane (EDB)ug/L2019.89970-130iolorobenzeneug/L2019.19670-130iolorobethaneug/L2016.78470-130iolorobethaneug/L2016.78470-130iolorobethaneug/L2019.29670-130ioloroptopaneug/L2019.79870-130imethylbenzeneug/L2018.89470-130iorobenzeneug/L4030.77747-143
Jorno-3-chloropropaneug/L2016.48245-137Jorno-3-chloropropaneug/L2019.89970-130Jorobenzeneug/L2019.19670-130Jorobethaneug/L2016.78470-130Jorobethaneug/L4035.68970-130 N2Joropropaneug/L2019.29670-130Joropropaneug/L2019.79870-130Jorobenzeneug/L2018.89470-130Jorobenzeneug/L4030.77747-143 J(v3)
nomoethane (EDB)ug/L2019.89970-130nlorobenzeneug/L2019.19670-130nloroethaneug/L2016.78470-130nloroethane (Total)ug/L4035.68970-130 N2nloroptopaneug/L2019.79670-130nlorobenzeneug/L2019.79870-130nlorobenzeneug/L2018.89470-130one (MEK)ug/L4030.77747-143 J(v3)
hlorobenzeneug/L2019.19670-130hloroethaneug/L2016.78470-130hloroethene (Total)ug/L4035.68970-130 N2hloropropaneug/L2019.29670-130imethylbenzeneug/L2019.79870-130hlorobenzeneug/L2018.89470-130one (MEK)ug/L4030.77747-143 J(v3)
Noroethaneug/L2016.78470-130nloroethene (Total)ug/L4035.68970-130 N2nloropropaneug/L2019.29670-130imethylbenzeneug/L2019.79870-130nlorobenzeneug/L2018.89470-130one (MEK)ug/L4030.77747-143 J(v3)
Inloroethene (Total) ug/L 40 35.6 89 70-130 N2 Inloropropane ug/L 20 19.2 96 70-130 imethylbenzene ug/L 20 19.7 98 70-130 nlorobenzene ug/L 20 18.8 94 70-130 one (MEK) ug/L 40 30.7 77 47-143 J(v3)
Ioropropaneug/L2019.29670-130imethylbenzeneug/L2019.79870-130nlorobenzeneug/L2018.89470-130one (MEK)ug/L4030.77747-143 J(v3)
imethylbenzeneug/L2019.79870-130nlorobenzeneug/L2018.89470-130one (MEK)ug/L4030.77747-143 J(v3)
nlorobenzeneug/L2018.89470-130one (MEK)ug/L4030.77747-143 J(v3)
one (MEK) ug/L 40 30.7 77 47-143 J(v3)
none ug/L 40 32.3 81 48-145
rl-2-pentanone (MIBK) ug/L 40 34.0 85 57-132
e ug/L 40 23.9 60 46-148 J(v3)
trile ug/L 200 137 69 33-175 J(v3)
e ug/L 20 19.5 98 70-130
hloromethane ug/L 20 18.3 92 70-130
ichloromethane ug/L 20 19.6 98 70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: JEA BEVERLY HILL

Pace Project No.: 35508497

LABORATORY CONTROL SAMPLE: 3175042

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromoform	ug/L	20	17.3	86	49-126	
Bromomethane	ug/L	20	4.0 U	13	10-165	J(v3)
Carbon disulfide	ug/L	20	19.4	97	60-141	
Carbon tetrachloride	ug/L	20	19.5	98	63-126	
hlorobenzene	ug/L	20	19.1	95	70-130	
hloroethane	ug/L	20	20.6	103	71-142	
hloroform	ug/L	20	19.2	96	70-130	
nloromethane	ug/L	20	14.6	73	40-140	J(v3)
-1,2-Dichloroethene	ug/L	20	18.3	92	70-130	
s-1,3-Dichloropropene	ug/L	20	18.1	91	70-130	
promochloromethane	ug/L	20	17.8	89	62-118	
bromomethane	ug/L	20	18.3	92	70-130	
hylbenzene	ug/L	20	19.8	99	70-130	
omethane	ug/L	40	9.3 U	7	10-164	J(L2), J(v3)
propylbenzene (Cumene)	ug/L	20	21.1	106	70-130	
p-Xylene	ug/L	40	40.8	102	70-130	
hyl-tert-butyl ether	ug/L	20	17.2	86	64-124	
hylene Chloride	ug/L	20	18.3	92	65-136	
ylene	ug/L	20	19.6	98	70-130	
rene	ug/L	20	20.9	105	70-130	
rachloroethene	ug/L	20	19.5	98	64-134	
Jene	ug/L	20	20.1	101	70-130	
ns-1,2-Dichloroethene	ug/L	20	17.3	86	68-127	
ns-1,3-Dichloropropene	ug/L	20	18.1	90	65-121	
ns-1,4-Dichloro-2-butene	ug/L	20	15.5	78	42-129	J(v3)
chloroethene	ug/L	20	18.8	94	70-130	
chlorofluoromethane	ug/L	20	20.4	102	65-135	
nyl acetate	ug/L	20	16.4	82	60-144	
yl chloride	ug/L	20	18.8	94	68-131	
ene (Total)	ug/L	60	60.3	101	70-130	
-Dichloroethane-d4 (S)	%			96	70-130	
Bromofluorobenzene (S)	%			103	70-130	
luene-d8 (S)	%			99	70-130	

MATRIX SPIKE SAMPLE:	3175044						
Parameter	Units	35508182003 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
T diameter					/01100		Quanners
1,1,1,2-Tetrachloroethane	ug/L	0.32 U	20	18.3	91	70-130	
1,1,1-Trichloroethane	ug/L	0.30 U	20	19.7	99	70-130	
1,1,2,2-Tetrachloroethane	ug/L	0.20 U	20	19.3	96	68-125	
1,1,2-Trichloroethane	ug/L	0.30 U	20	18.4	92	70-130	
1,1-Dichloroethane	ug/L	0.34 U	20	18.5	93	70-130	
1,1-Dichloroethene	ug/L	0.50 U	20	18.9	94	66-133	
1,2,3-Trichloropropane	ug/L	1.1 U	20	15.9	80	62-127	
1,2,4-Trimethylbenzene	ug/L	0.50 U	20	18.5	92	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: JEA BEVERLY HILL

Pace Project No.: 35508497

MATRIX SPIKE SAMPLE:	3175044	25500402002	Spiles	MS	MS	% Rec	
Parameter	Units	35508182003 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Quali	fiers
1,2-Dibromo-3-chloropropane	ug/L	1.9 U	20	17.5	87	45-137	
1,2-Dibromoethane (EDB)	ug/L	0.31 U	20	18.5	93	70-130	
1,2-Dichlorobenzene	ug/L	0.50 U	20	17.6	88	70-130	
1,2-Dichloroethane	ug/L	0.50 U	20	16.0	80	70-130	
1,2-Dichloroethene (Total)	ug/L	0.27 U	40	33.4	83	70-130 N2	
1,2-Dichloropropane	ug/L	0.23 U	20	17.9	89	70-130	
1,3,5-Trimethylbenzene	ug/L	0.50 U	20	18.4	92	70-130	
1,4-Dichlorobenzene	ug/L	0.50 U	20	17.4	87	70-130	
2-Butanone (MEK)	ug/L	5.0 U	40	29.9	75	47-143 J(v3)	
2-Hexanone	ug/L	0.85 U	40	34.7	87	48-145	
1-Methyl-2-pentanone (MIBK)	ug/L	0.32 U	40	35.7	89	57-132	
Acetone	ug/L	5.3 U	40	25.3	63	46-148 J(v3)	
Acetonitrile	ug/L	24.5 U	200	160	80	33-175 J(v3)	
Benzene	ug/L	0.10 U	20	18.1	91	70-130	
Bromochloromethane	ug/L	0.37 U	20	16.7	83	70-130	
Bromodichloromethane	ug/L	0.19 U	20	18.0	90	70-130	
Bromoform	ug/L	2.6 U	20	15.4	77	49-126	
Bromomethane	ug/L	4.0 U	20	4.0 U	5	10-165 J(M1),J	(v2)
Carbon disulfide	ug/L	0.45 U	20	16.4	81	60-141	
Carbon tetrachloride	ug/L	0.50 U	20	18.7	93	63-126	
Chlorobenzene	ug/L	0.50 U	20	17.4	87	70-130	
Chloroethane	ug/L	3.7 U	20	19.4	97	71-142	
Chloroform	ug/L	0.50 U	20	17.6	88	70-130	
Chloromethane	ug/L	0.97 U	20	12.9	65	40-140 J(v3)	
sis-1,2-Dichloroethene	ug/L	0.50 U	20	17.0	85	70-130	
cis-1,3-Dichloropropene	ug/L	0.17 U	20	15.1	75	70-130	
Dibromochloromethane	ug/L	0.45 U	20	16.1	81	62-118	
Dibromomethane	ug/L	0.68 U	20	16.8	84	70-130	
Ethylbenzene	ug/L	0.50 U	20	18.2	91	70-130	
odomethane	ug/L	9.3 U	40	9.3 U	3	10-164 J(M0),J	(v2)
sopropylbenzene (Cumene)	ug/L	0.50 U	20	18.9	95	70-130	,
n&p-Xylene	ug/L	1.0 U	40	36.9	92	70-130	
Methyl-tert-butyl ether	ug/L	0.50 U	20	16.1	80	64-124	
Methylene Chloride	ug/L	2.0 U	20	17.3	86	65-136	
p-Xylene	ug/L	0.50 U	20	17.5	89	70-130	
Styrene	ug/L	0.26 U	20	18.1	91	70-130	
Fetrachloroethene	ug/L	0.50 U	20	17.2	86	64-134	
oluene	ug/L	0.50 U	20	19.2	96	70-130	
rans-1,2-Dichloroethene	ug/L	0.50 U	20	16.4	82	68-127	
rans-1,3-Dichloropropene	ug/L	0.17 U	20	16.2	81	65-121	
rans-1,4-Dichloro-2-butene	ug/L	2.5 U	20	13.1	66	42-129 J(v2)	
Trichloroethene	ug/L	0.50 U	20	17.2	86	70-130	
Frichlorofluoromethane	ug/L	0.35 U	20	17.2	80 77	65-135	
/inyl acetate	ug/L	0.33 U 0.19 U	20	13.5	67	60-144	
/inyl chloride	ug/L	0.19 U	20 20	13.5	67 79	68-131	
-		1.0 U					
Xylene (Total) 1,2-Dichloroethane-d4 (S)	ug/L %	1.0 0	60	54.7	91 100	70-130 70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: JEA BEVERLY HILL

Pace Project No.: 35508497

MATRIX SPIKE SAMPLE:	3175044						
		35508182003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
4-Bromofluorobenzene (S)	%				97	70-130	
Toluene-d8 (S)	%				98	70-130	

SAMPLE DUPLICATE: 3175043		05500400000	5			
Parameter	Units	35508182002 Result	Dup Result	RPD	Max RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		0.32 U			40
1,1,1-Trichloroethane	ug/L	0.30 U	0.32 U			40
1,1,2,2-Tetrachloroethane	ug/L	0.20 U	0.20 U			40
1,1,2-Trichloroethane	ug/L	0.30 U	0.30 U			40
,1-Dichloroethane	ug/L	0.34 U	0.34 U			40
,1-Dichloroethene	ug/L	0.50 U	0.50 U			40
,2,3-Trichloropropane	ug/L	1.1 U	1.1 U			40
2,4-Trimethylbenzene	ug/L	0.50 U	0.50 U			40
,2-Dibromo-3-chloropropane	ug/L	1.9 U	1.9 U			40
,2-Dibromoethane (EDB)	ug/L	0.31 U	0.31 U			40
,2-Dichlorobenzene	ug/L	0.50 U	0.50 U			40
,2-Dichloroethane	ug/L	0.50 U	0.50 U			40
,2-Dichloroethene (Total)	ug/L	0.27 U	0.27 U			40 N2
2-Dichloropropane	ug/L	0.23 U	0.23 U			40
,3,5-Trimethylbenzene	ug/L	0.50 U	0.50 U			40
4-Dichlorobenzene	ug/L	0.50 U	0.50 U			40
Butanone (MEK)	ug/L	5.0 U	5.0 U			40 J(v3)
Hexanone	ug/L	0.85 U	0.85 U			40
Methyl-2-pentanone (MIBK)	ug/L	0.32 U	0.32 U			40
etone	ug/L	5.3 1	7.5 I			40 J(v3)
etonitrile	ug/L	24.5 U	24.5 U			40 J(v2)
enzene	ug/L	0.10 U	0.10 U			40
omochloromethane	ug/L	0.37 U	0.37 U			40
omodichloromethane	ug/L	0.19 U	0.19 U			40
omoform	ug/L	2.6 U	2.6 U			40
romomethane	ug/L	4.0 U	4.0 U		4	40 J(v2)
arbon disulfide	ug/L	0.45 U	0.45 U			40
arbon tetrachloride	ug/L	0.50 U	0.50 U		4	40
hlorobenzene	ug/L	0.50 U	0.50 U		4	40
hloroethane	ug/L	3.7 U	3.7 U		4	40
hloroform	ug/L	0.50 U	0.50 U			40
nloromethane	ug/L	0.97 U	0.97 U		4	40 J(v2)
s-1,2-Dichloroethene	ug/L	0.50 U	0.50 U			40
s-1,3-Dichloropropene	ug/L	0.17 U	0.17 U		4	40
bromochloromethane	ug/L	0.45 U	0.45 U			40
bromomethane	ug/L	0.68 U	0.68 U		4	40
thylbenzene	ug/L	0.50 U	0.50 U		4	40
odomethane	ug/L	9.3 U	9.3 U		4	40 J(v2)
sopropylbenzene (Cumene)	ug/L	0.50 U	0.50 U			40

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: JEA BEVERLY HILL

Pace Project No.: 35508497

SAMPLE DUPLICATE: 3175043

		35508182002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
m&p-Xylene	ug/L		1.0 U		40	0
Methyl-tert-butyl ether	ug/L	0.50 U	0.50 U		40	D
Methylene Chloride	ug/L	2.0 U	2.0 U		40	D
o-Xylene	ug/L	0.50 U	0.50 U		40	D
Styrene	ug/L	0.26 U	0.26 U		40	C
Tetrachloroethene	ug/L	0.50 U	0.50 U		40	D
Toluene	ug/L	0.50 U	0.50 U		40	D
trans-1,2-Dichloroethene	ug/L	0.50 U	0.50 U		40	D
trans-1,3-Dichloropropene	ug/L	0.17 U	0.17 U		40	D
rans-1,4-Dichloro-2-butene	ug/L	2.5 U	2.5 U		40) J(v2)
Trichloroethene	ug/L	0.50 U	0.50 U		40	C
Trichlorofluoromethane	ug/L	0.35 U	0.35 U		40	D
Vinyl acetate	ug/L	0.19 U	0.19 U		40	D
Vinyl chloride	ug/L	0.50 U	0.50 U		40	D
Xylene (Total)	ug/L	1.0 U	1.0 U		40	C
1,2-Dichloroethane-d4 (S)	%	103	100		40	C
4-Bromofluorobenzene (S)	%	94	96		40	C
Toluene-d8 (S)	%	102	101		40	D

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: JEA BEVERLY HILL

Pace Project No.: 35508497

Analysis Method: QC Batch: 584224 EPA 8260 QC Batch Method: EPA 8260 Analysis Description: 8260 MSV Associated Lab Samples: 35508497001 METHOD BLANK: 3176352 Matrix: Water Associated Lab Samples: 35508497001 Blank Reporting MDL Parameter Result Limit Units Analyzed Qualifiers 1,1,1,2-Tetrachloroethane 0.32 U 1.0 0.32 11/05/19 01:20 ug/L 1 1 1-Trichloroethane ug/L 0.30 U 1.0 0.30 11/05/19 01:20 0.20 U 1,1,2,2-Tetrachloroethane ug/L 0.50 0.20 11/05/19 01:20 0.30 U 1,1,2-Trichloroethane ug/L 1.0 0.30 11/05/19 01:20 1,1-Dichloroethane ug/L 0.34 U 1.0 0.34 11/05/19 01:20 1,1-Dichloroethene ug/L 0.50 U 1.0 0.50 11/05/19 01:20 1,2,3-Trichloropropane ug/L 1.1 U 2.0 1.1 11/05/19 01:20 1,2,4-Trimethylbenzene ug/L 0.50 U 1.0 0.50 11/05/19 01:20 1,2-Dibromo-3-chloropropane ug/L 1.9 U 5.0 1.9 11/05/19 01:20 1.2-Dibromoethane (EDB) ug/L 0.31 U 1.0 0.31 11/05/19 01:20 1.2-Dichlorobenzene 0.50 U 1.0 0.50 11/05/19 01:20 ug/L 0.50 U 1.0 0.50 1,2-Dichloroethane ug/L 11/05/19 01:20 ug/L 1.0 1,2-Dichloroethene (Total) 0.27 U 0.27 11/05/19 01:20 N2 1,2-Dichloropropane 0.23 U 1.0 0.23 11/05/19 01:20 ug/L 1,3,5-Trimethylbenzene 0.50 U 0.50 ug/L 1.0 11/05/19 01:20 1,4-Dichlorobenzene ug/L 0.50 U 1.0 0.50 11/05/19 01:20 2-Butanone (MEK) ug/L 5.0 U 10.0 5.0 11/05/19 01:20 2-Hexanone ug/L 0.85 U 10.0 0.85 11/05/19 01:20 4-Methyl-2-pentanone (MIBK) 0.32 U 10.0 0.32 11/05/19 01:20 ug/L 5.3 U 20.0 Acetone ug/L 5.3 11/05/19 01:20 J(v2) Acetonitrile 24.5 U 40.0 24.5 11/05/19 01:20 J(v2) ug/L Benzene 0.10 U 1.0 0.10 11/05/19 01:20 ug/L Bromochloromethane 0.37 U 1.0 0.37 11/05/19 01:20 ug/L Bromodichloromethane 0.19 U 0.60 0.19 11/05/19 01:20 ug/L Bromoform 2.6 U 3.0 2.6 11/05/19 01:20 ug/L Bromomethane ug/L 4.0 U 5.0 4.0 11/05/19 01:20 J(v2) Carbon disulfide ug/L 0.45 U 10.0 0.45 11/05/19 01:20 Carbon tetrachloride ug/L 0.50 U 3.0 0.50 11/05/19 01:20 Chlorobenzene 0.50 U 1.0 0.50 11/05/19 01:20 ug/L Chloroethane 3.7 U 10.0 11/05/19 01:20 ug/L 3.7 Chloroform ug/L 0.50 U 1.0 0.50 11/05/19 01:20 Chloromethane ug/L 0.97 U 1.0 0.97 11/05/19 01:20 cis-1,2-Dichloroethene ug/L 0.50 U 1.0 0.50 11/05/19 01:20 cis-1,3-Dichloropropene ug/L 0 17 U 0.50 0 17 11/05/19 01:20 Dibromochloromethane ug/L 0.45 U 2.0 0.45 11/05/19 01:20 Dibromomethane ug/L 0.68 U 2.0 0.68 11/05/19 01:20 Ethylbenzene 0.50 U 0.50 ug/L 1.0 11/05/19 01:20 10.0 Iodomethane ug/L 9.3 U 9.3 11/05/19 01:20 J(v2) Isopropylbenzene (Cumene) ug/L 0.50 U 1.0 0.50 11/05/19 01:20 m&p-Xylene ug/L 1.0 U 4.0 11/05/19 01:20 1.0 Methyl-tert-butyl ether 0.50 U 11/05/19 01:20 ug/L 2.0 0.50

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: JEA BEVERLY HILL

Pace Project No.: 35508497

METHOD BLANK: 317635	2	Matrix:	Water			
Associated Lab Samples:	35508497001					
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Methylene Chloride	ug/L	2.0 U	5.0	2.0	11/05/19 01:20	
o-Xylene	ug/L	0.50 U	1.0	0.50	11/05/19 01:20	
Styrene	ug/L	0.26 U	1.0	0.26	11/05/19 01:20	
Tetrachloroethene	ug/L	0.50 U	1.0	0.50	11/05/19 01:20	
Toluene	ug/L	0.50 U	1.0	0.50	11/05/19 01:20	
trans-1,2-Dichloroethene	ug/L	0.50 U	1.0	0.50	11/05/19 01:20	
trans-1,3-Dichloropropene	ug/L	0.17 U	0.50	0.17	11/05/19 01:20	
trans-1,4-Dichloro-2-butene	ug/L	2.5 U	10.0	2.5	11/05/19 01:20	
Trichloroethene	ug/L	0.50 U	1.0	0.50	11/05/19 01:20	
Trichlorofluoromethane	ug/L	0.35 U	1.0	0.35	11/05/19 01:20	
Vinyl acetate	ug/L	0.19 U	10.0	0.19	11/05/19 01:20	
Vinyl chloride	ug/L	0.50 U	1.0	0.50	11/05/19 01:20	
Xylene (Total)	ug/L	1.0 U	5.0	1.0	11/05/19 01:20	
1,2-Dichloroethane-d4 (S)	%	98	70-130		11/05/19 01:20	
4-Bromofluorobenzene (S)	%	95	70-130		11/05/19 01:20	
Toluene-d8 (S)	%	100	70-130		11/05/19 01:20	

LABORATORY CONTROL SAMPLE: 3176353

EADORATORY CONTROL DAME EL.	0170000	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	20	21.0	105	70-130	
1,1,1-Trichloroethane	ug/L	20	21.2	106	70-130	
1,1,2,2-Tetrachloroethane	ug/L	20	20.4	102	68-125	
1,1,2-Trichloroethane	ug/L	20	19.9	100	70-130	
1,1-Dichloroethane	ug/L	20	20.5	103	70-130	
,1-Dichloroethene	ug/L	20	19.2	96	66-133	
,2,3-Trichloropropane	ug/L	20	19.3	96	62-127	
,2,4-Trimethylbenzene	ug/L	20	21.0	105	70-130	
,2-Dibromo-3-chloropropane	ug/L	20	17.2	86	45-137	
,2-Dibromoethane (EDB)	ug/L	20	19.8	99	70-130	
,2-Dichlorobenzene	ug/L	20	20.2	101	70-130	
2-Dichloroethane	ug/L	20	17.8	89	70-130	
2-Dichloroethene (Total)	ug/L	40	36.4	91	70-130 l	N2
2-Dichloropropane	ug/L	20	20.0	100	70-130	
3,5-Trimethylbenzene	ug/L	20	20.8	104	70-130	
4-Dichlorobenzene	ug/L	20	19.6	98	70-130	
-Butanone (MEK)	ug/L	40	33.6	84	47-143	
-Hexanone	ug/L	40	33.5	84	48-145	
-Methyl-2-pentanone (MIBK)	ug/L	40	36.2	90	57-132	
cetone	ug/L	40	27.8	70	46-148	J(v3)
cetonitrile	ug/L	200	148	74	33-175	J(v3)
enzene	ug/L	20	20.3	102	70-130	
Bromochloromethane	ug/L	20	17.8	89	70-130	
Bromodichloromethane	ug/L	20	20.4	102	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: JEA BEVERLY HILL

Pace Project No.: 35508497

LABORATORY CONTROL SAMPLE: 3176353

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromoform	ug/L	20	16.9	84	49-126	
Bromomethane	ug/L	20	6.0	30	10-165	J(v3)
Carbon disulfide	ug/L	20	19.1	95	60-141	
arbon tetrachloride	ug/L	20	19.4	97	63-126	
hlorobenzene	ug/L	20	19.9	100	70-130	
nloroethane	ug/L	20	21.9	110	71-142	
loroform	ug/L	20	19.8	99	70-130	
loromethane	ug/L	20	19.3	97	40-140	
-1,2-Dichloroethene	ug/L	20	18.8	94	70-130	
s-1,3-Dichloropropene	ug/L	20	18.6	93	70-130	
promochloromethane	ug/L	20	17.9	89	62-118	
promomethane	ug/L	20	18.3	92	70-130	
ylbenzene	ug/L	20	20.5	103	70-130	
omethane	ug/L	40	21.6	54	10-164	J(v3)
propylbenzene (Cumene)	ug/L	20	21.8	109	70-130	
p-Xylene	ug/L	40	42.3	106	70-130	
hyl-tert-butyl ether	ug/L	20	17.0	85	64-124	
hylene Chloride	ug/L	20	19.9	99	65-136	
ylene	ug/L	20	20.3	102	70-130	
ene	ug/L	20	21.9	109	70-130	
achloroethene	ug/L	20	20.4	102	64-134	
ene	ug/L	20	21.1	105	70-130	
s-1,2-Dichloroethene	ug/L	20	17.6	88	68-127	
ns-1,3-Dichloropropene	ug/L	20	18.5	92	65-121	
ns-1,4-Dichloro-2-butene	ug/L	20	16.8	84	42-129	
chloroethene	ug/L	20	19.8	99	70-130	
chlorofluoromethane	ug/L	20	20.3	101	65-135	
yl acetate	ug/L	20	16.9	85	60-144	
yl chloride	ug/L	20	20.6	103	68-131	
ene (Total)	ug/L	60	62.6	104	70-130	
-Dichloroethane-d4 (S)	%			100	70-130	
Bromofluorobenzene (S)	%			100	70-130	
luene-d8 (S)	%			100	70-130	

MATRIX SPIKE SAMPLE:	3176413						
_		35508176003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	0.32 U	20	17.8	89	70-130	
1,1,1-Trichloroethane	ug/L	0.30 U	20	19.5	98	70-130	
1,1,2,2-Tetrachloroethane	ug/L	0.20 U	20	17.3	86	68-125	
1,1,2-Trichloroethane	ug/L	0.30 U	20	17.1	86	70-130	
1,1-Dichloroethane	ug/L	0.34 U	20	18.4	92	70-130	
1,1-Dichloroethene	ug/L	0.50 U	20	18.0	90	66-133	
1,2,3-Trichloropropane	ug/L	1.1 U	20	16.1	80	62-127	
1,2,4-Trimethylbenzene	ug/L	0.50 U	20	17.5	87	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: JEA BEVERLY HILL

Pace Project No.: 35508497

MATRIX SPIKE SAMPLE:	3176413	05500 - 5000	0.1			27 D
Parameter	Units	35508176003 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
1,2-Dibromo-3-chloropropane	ug/L		20	15.1	75	45-137
1,2-Dibromoethane (EDB)	ug/L	0.31 U	20	16.5	83	70-130
1,2-Dichlorobenzene	ug/L	0.50 U	20	16.9	85	70-130
1,2-Dichloroethane	ug/L	0.50 U	20	15.6	78	70-130
, 1,2-Dichloroethene (Total)	ug/L	0.27 U	40	31.1	78	70-130 N2
1,2-Dichloropropane	ug/L	0.23 U	20	17.2	86	70-130
1,3,5-Trimethylbenzene	ug/L	0.50 U	20	17.6	88	70-130
I,4-Dichlorobenzene	ug/L	0.50 U	20	16.3	82	70-130
2-Butanone (MEK)	ug/L	5.0 U	40	25.6	64	47-143
2-Hexanone	ug/L	0.85 U	40	27.5	69	48-145
I-Methyl-2-pentanone (MIBK)	ug/L	0.32 U	40	30.8	77	57-132
Acetone	ug/L	5.3 U	40	21.7	54	46-148 J(v3)
Acetonitrile	ug/L	24.5 U	200	117	59	33-175 J(v3)
Benzene	ug/L	0.10 U	200	17.7	89	70-130
Bromochloromethane	ug/L	0.37 U	20	15.2	76	70-130
Bromodichloromethane	ug/L	0.19 U	20	17.5	87	70-130
Bromoform	ug/L	2.6 U	20	14.7	73	49-126
Bromomethane	ug/L	4.0 U	20	4.0 U	14	10-165 J(v3)
Carbon disulfide	ug/L	0.45 U	20	18.4	91	60-141
Carbon tetrachloride	ug/L	0.50 U	20	18.1	91	63-126
Chlorobenzene	ug/L	0.50 U	20	17.1	85	70-130
Chloroethane	ug/L	3.7 U	20	20.9	105	71-142
Chloroform	ug/L	0.50 U	20	20.9 17.6	88	70-130
Chloromethane	ug/L	0.97 U	20 20	16.0	80	40-140
is-1,2-Dichloroethene	ug/L	0.50 U	20	16.0	80 80	70-130
	-	0.17 U	20	13.8	69	
cis-1,3-Dichloropropene	ug/L	0.45 U				70-130 J(M1)
Dibromochloromethane	ug/L	0.43 U	20 20	15.0	75 75	62-118 70-130
Dibromomethane	ug/L	0.50 U		15.0	75	
Ethylbenzene	ug/L	9.3 U	20	17.7	88	70-130
odomethane	ug/L	9.3 U 0.50 U	40	9.3 U	20	10-164 J(v3)
sopropylbenzene (Cumene)	ug/L		20	18.7	93	70-130
n&p-Xylene	ug/L	1.0 U	40	36.1	90	70-130
Aethyl-tert-butyl ether	ug/L	0.50 U	20	14.4	72	64-124
Aethylene Chloride	ug/L	2.0 U	20	17.3	86	65-136
-Xylene	ug/L	0.50 U	20	17.2	86	70-130
Styrene	ug/L	0.26 U	20	18.0	90	70-130
etrachloroethene	ug/L	0.50 U	20	15.7	79	64-134
oluene	ug/L	0.50 U	20	18.3	91	70-130
rans-1,2-Dichloroethene	ug/L	0.50 U	20	15.1	76	68-127
rans-1,3-Dichloropropene	ug/L	0.17 U	20	14.3	72	65-121
rans-1,4-Dichloro-2-butene	ug/L	2.5 U	20	13.2	66	42-129
Trichloroethene	ug/L	0.50 U	20	16.8	84	70-130
richlorofluoromethane	ug/L	0.35 U	20	20.0	100	65-135
/inyl acetate	ug/L	0.19 U	20	12.0	60	60-144
/inyl chloride	ug/L	0.50 U	20	19.3	97	68-131
Kylene (Total)	ug/L	1.0 U	60	53.3	89	70-130
1,2-Dichloroethane-d4 (S)	%				101	70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEA BEVERLY HILL

Pace Project No.: 35508497

MATRIX SPIKE SAMPLE:	3176413						
		35508176003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
4-Bromofluorobenzene (S)	%				99	70-130	
Toluene-d8 (S)	%				100	70-130	

SAMPLE DUPLICATE: 3176354		25500470004	Dur		Max	
Parameter	Units	35508176004 Result	Dup Result	RPD	Max RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		0.32 U			40
1,1,1-Trichloroethane	ug/L	0.32 U	0.32 U 0.30 U			40
1,1,2,2-Tetrachloroethane	ug/L	0.20 U	0.30 U 0.20 U			40
1,1,2-Trichloroethane	ug/L	0.30 U	0.20 U			40
,1-Dichloroethane	ug/L	0.34 U	0.30 U 0.34 U			40
,1-Dichloroethene	ug/L	0.50 U	0.54 U			40
,2,3-Trichloropropane	ug/L	1.1 U	0.30 U 1.1 U			40
,2,4-Trimethylbenzene	ug/L	0.50 U	0.50 U			40
,2-Dibromo-3-chloropropane	ug/L	1.9 U	1.9 U			40
,2-Dibromoethane (EDB)	ug/L	0.31 U	0.31 U			40
,2-Dichlorobenzene	ug/L ug/L	0.50 U	0.31 U 0.50 U			40 40
,2-Dichloroethane	ug/L ug/L	0.50 U	0.50 U 0.50 U			40 40
,2-Dichloroethene (Total)	ug/L ug/L	0.30 U 0.27 U	0.30 U 0.27 U			40 40 N2
,2-Dichloropropane	ug/L ug/L	0.27 U	0.27 U 0.23 U			40 NZ 40
,3,5-Trimethylbenzene	ug/L ug/L	0.23 U 0.50 U	0.23 U 0.50 U			40 40
,4-Dichlorobenzene	ug/L	0.50 U	0.50 U			40 40
-Butanone (MEK)	ug/L	5.0 U	5.0 U			40 40
-Hexanone	ug/L	0.85 U	0.85 U			40
-Methyl-2-pentanone (MIBK)	ug/L	0.32 U	0.33 U			40
cetone	ug/L	5.3 U	5.3 U			40 40 J(v2)
cetonitrile	ug/L	24.5 U	24.5 U			40 J(v2) 40 J(v2)
enzene	ug/L	0.10 U	0.10 U			40 3(V2) 40
romochloromethane	ug/L	0.37 U	0.10 U			40 40
romodichloromethane	ug/L	0.37 U	0.37 U 0.19 U			40
romoform	ug/L	2.6 U	2.6 U			40
romomethane	ug/L	4.0 U	4.0 U			40 J(v2)
Carbon disulfide	ug/L	0.45 U	0.45 U			40 3(02) 40
Carbon tetrachloride	ug/L	0.50 U	0.45 U			40
Chlorobenzene	ug/L	0.50 U	0.50 U			40
Chloroethane	ug/L	3.7 U	3.7 U			40
Chloroform	ug/L	0.50 U	0.50 U			40
Chloromethane	ug/L	0.97 U	0.97 U			40
is-1,2-Dichloroethene	ug/L	0.50 U	0.50 U			40
is-1,3-Dichloropropene	ug/L	0.17 U	0.17 U			40
Dibromochloromethane	ug/L	0.45 U	0.45 U			40
Dibromomethane	ug/L	0.68 U	0.68 U			40
Ethylbenzene	ug/L	0.50 U	0.50 U			40
odomethane	ug/L	9.3 U	9.3 U			40 J(v2)
sopropylbenzene (Cumene)	ug/L	0.50 U	0.50 U			40

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: JEA BEVERLY HILL

Pace Project No.: 35508497

SAMPLE DUPLICATE: 3176354

		35508176004	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
m&p-Xylene	ug/L	1.0 U	1.0 U		40	
Methyl-tert-butyl ether	ug/L	0.50 U	0.50 U		40	
Methylene Chloride	ug/L	2.0 U	2.0 U		40	
o-Xylene	ug/L	0.50 U	0.50 U		40	
Styrene	ug/L	0.26 U	0.26 U		40	
Tetrachloroethene	ug/L	0.50 U	0.50 U		40	
Toluene	ug/L	0.50 U	0.50 U		40	
trans-1,2-Dichloroethene	ug/L	0.50 U	0.50 U		40	
trans-1,3-Dichloropropene	ug/L	0.17 U	0.17 U		40	
trans-1,4-Dichloro-2-butene	ug/L	2.5 U	2.5 U		40	
Trichloroethene	ug/L	0.50 U	0.50 U		40	
Trichlorofluoromethane	ug/L	0.35 U	0.35 U		40	
Vinyl acetate	ug/L	0.19 U	0.19 U		40	
Vinyl chloride	ug/L	0.50 U	0.50 U		40	
Xylene (Total)	ug/L	1.0 U	1.0 U		40	
1,2-Dichloroethane-d4 (S)	%	100	101		40	
4-Bromofluorobenzene (S)	%	94	93		40	
Toluene-d8 (S)	%	101	102		40	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: JEA BEVERLY HILL

Pace Project No.: 35508497

QC Batch:	583454	Analysis Method:	EPA 8270 by SIM	
QC Batch Method:	EPA 3510	Analysis Description:	8270 Water PAHLV by SIM MSSV	
Associated Lab Sam	bles: 35508497001, 35508497002			
METHOD BLANK:	3172127	Matrix: Water		
Associated Lab Sam	bles: 35508497001, 35508497002			
		Blank Reportin		

Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1-Methylnaphthalene	ug/L	0.19 U	2.0	0.19	11/02/19 14:18	
2-Methylnaphthalene	ug/L	0.68 U	2.0	0.68	11/02/19 14:18	
Acenaphthene	ug/L	0.040 U	0.50	0.040	11/02/19 14:18	
Acenaphthylene	ug/L	0.030 U	0.50	0.030	11/02/19 14:18	
Anthracene	ug/L	0.043 U	0.50	0.043	11/02/19 14:18	
Benzo(a)anthracene	ug/L	0.055 U	0.10	0.055	11/02/19 14:18	
Benzo(a)pyrene	ug/L	0.12 U	0.20	0.12	11/02/19 14:18	
Benzo(b)fluoranthene	ug/L	0.027 U	0.10	0.027	11/02/19 14:18	
Benzo(g,h,i)perylene	ug/L	0.15 U	0.50	0.15	11/02/19 14:18	
Benzo(k)fluoranthene	ug/L	0.16 U	0.50	0.16	11/02/19 14:18	
Chrysene	ug/L	0.026 U	0.50	0.026	11/02/19 14:18	
Dibenz(a,h)anthracene	ug/L	0.13 U	0.15	0.13	11/02/19 14:18	
Fluoranthene	ug/L	0.018 U	0.50	0.018	11/02/19 14:18	
Fluorene	ug/L	0.088 U	0.50	0.088	11/02/19 14:18	
ndeno(1,2,3-cd)pyrene	ug/L	0.12 U	0.15	0.12	11/02/19 14:18	
Naphthalene	ug/L	0.29 U	2.0	0.29	11/02/19 14:18	
Phenanthrene	ug/L	0.16 U	0.50	0.16	11/02/19 14:18	
Pyrene	ug/L	0.032 U	0.50	0.032	11/02/19 14:18	
2-Fluorobiphenyl (S)	%	68	38-92		11/02/19 14:18	
p-Terphenyl-d14 (S)	%	79	54-112		11/02/19 14:18	

LABORATORY CONTROL SAMPLE: 3172128

LADORATORT CONTROL SAME	L. 3172120					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/L	5	3.6	72	40-96	
2-Methylnaphthalene	ug/L	5	3.5	70	40-94	
Acenaphthene	ug/L	5	4.0	80	42-96	
Acenaphthylene	ug/L	5	3.7	73	39-90	
Anthracene	ug/L	5	4.3	86	46-109	
Benzo(a)anthracene	ug/L	5	4.5	90	50-116	
Benzo(a)pyrene	ug/L	5	4.6	92	48-117	
Benzo(b)fluoranthene	ug/L	5	4.7	94	51-124	
Benzo(g,h,i)perylene	ug/L	5	4.7	93	47-121	
Benzo(k)fluoranthene	ug/L	5	4.8	96	50-125	
Chrysene	ug/L	5	5.0	99	53-122	
Dibenz(a,h)anthracene	ug/L	5	4.6	92	45-123	
Fluoranthene	ug/L	5	4.4	87	52-119	
Fluorene	ug/L	5	3.8	77	44-100	
ndeno(1,2,3-cd)pyrene	ug/L	5	4.6	92	46-121	
Naphthalene	ug/L	5	3.6	72	40-91	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: JEA BEVERLY HILL

Pace Project No.: 35508497

LABORATORY CONTROL SAMPLE:	3172128					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Phenanthrene	ug/L	5	4.5	89	47-111	
Pyrene	ug/L	5	4.4	89	51-120	
2-Fluorobiphenyl (S)	%			65	38-92	
p-Terphenyl-d14 (S)	%			76	54-112	

MATRIX SPIKE SAMPLE:	3172685						
		35508425001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/L	0.19 U	5	3.5	69	40-96	
2-Methylnaphthalene	ug/L	0.68 U	5	3.4	67	40-94	
Acenaphthene	ug/L	0.040 U	5	3.8	76	42-96	
Acenaphthylene	ug/L	0.030 U	5	3.5	70	39-90	
Anthracene	ug/L	0.043 U	5	4.4	88	46-109	
Benzo(a)anthracene	ug/L	0.055 U	5	4.6	91	50-116	
Benzo(a)pyrene	ug/L	0.12 U	5	4.6	91	48-117	
Benzo(b)fluoranthene	ug/L	0.027 U	5	4.6	92	51-124	
Benzo(g,h,i)perylene	ug/L	0.15 U	5	4.6	91	47-121	
Benzo(k)fluoranthene	ug/L	0.16 U	5	4.8	95	50-125	
Chrysene	ug/L	0.026 U	5	4.9	99	53-122	
Dibenz(a,h)anthracene	ug/L	0.13 U	5	4.6	91	45-123	
Fluoranthene	ug/L	0.018 U	5	4.5	90	52-119	
Fluorene	ug/L	0.088 U	5	3.7	74	44-100	
Indeno(1,2,3-cd)pyrene	ug/L	0.12 U	5	4.5	91	46-121	
Naphthalene	ug/L	0.29 U	5	3.6	72	40-91	
Phenanthrene	ug/L	0.16 U	5	4.4	88	47-111	
Pyrene	ug/L	0.032 U	5	4.5	90	51-120	
2-Fluorobiphenyl (S)	%				63	38-92	
p-Terphenyl-d14 (S)	%				77	54-112	

SAMPLE DUPLICATE: 3172686

		35508497001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1-Methylnaphthalene	ug/L	0.19 U	0.19 U		40	
2-Methylnaphthalene	ug/L	0.68 U	0.68 U		40	
Acenaphthene	ug/L	0.040 U	0.040 U		40	
Acenaphthylene	ug/L	0.030 U	0.030 U		40	
Anthracene	ug/L	0.043 U	0.043 U		40	
Benzo(a)anthracene	ug/L	0.055 U	0.055 U		40	
Benzo(a)pyrene	ug/L	0.12 U	0.12 U		40	
Benzo(b)fluoranthene	ug/L	0.027 U	0.027 U		40	
Benzo(g,h,i)perylene	ug/L	0.15 U	0.15 U		40	
Benzo(k)fluoranthene	ug/L	0.16 U	0.16 U		40	
Chrysene	ug/L	0.026 U	0.026 U		40	
Dibenz(a,h)anthracene	ug/L	0.13 U	0.13 U		40	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: JEA BEVERLY HILL

Pace Project No.: 35508497

	35508497001	Dup		Max	
Parameter Units	Result	Result	RPD	RPD	Qualifiers
Fluoranthene ug/L	0.018 U	0.018 U		40	
Fluorene ug/L	0.088 U	0.088 U		40	
Indeno(1,2,3-cd)pyrene ug/L	0.12 U	0.12 U		40	
Naphthalene ug/L	0.29 U	0.29 U		40	
Phenanthrene ug/L	0.16 U	0.16 U		40	
Pyrene ug/L	0.032 U	0.032 U		40	
2-Fluorobiphenyl (S) %	65	67			
p-Terphenyl-d14 (S) %	77	77			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: JEA BEVERLY HILL

Pace Project No.: 35508497

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-O Pace Analytical Services - Ormond Beach

ANALYTE QUALIFIERS

- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- U Compound was analyzed for but not detected.
- J(L2) Estimated Value. Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
- J(M0) Estimated Value. Matrix spike recovery was outside laboratory control limits.
- J(M1) Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- J(v2) The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.
- J(v3) The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JEA BEVERLY HILL Pace Project No.: 35508497

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
35508497001	BH-TMW-1	EPA 3010	583134	EPA 6020	583218
35508497002	BH-TMW-2	EPA 3010	583134	EPA 6020	583218
35508497001	BH-TMW-1	EPA 3510	583454	EPA 8270 by SIM	583689
35508497002	BH-TMW-2	EPA 3510	583454	EPA 8270 by SIM	583689
35508497001	BH-TMW-1	EPA 8260	584224		
35508497002	BH-TMW-2	EPA 8260	583908		

ent ted accurately.	Page: 1 Of 1		Regulatory Agency	State / Location	FL FL KVN)	(V/V)		×	Cenolinico Cenolinico	Terret	2 is interior				E TIME SAMPLE CONDITIONS	14 D'100	6	1700	IN I NO SOUCH	blez) oq <u>A</u>) b iu C	тем
	tion C sice Information: Attention:	လုပ္လံ Company Name: Address	Pace Quote:	Pace Project Manager: todd rea@pacelabs.com,		Image: Control of the control of t	N/1 /1 /1 /1	1346 61 11 1111							ON DATE TIME AGCEPTED BY I AFFILIATION DATE	PACE 10/28/2019 1100 1 1100 1 1100	of 2:10 1000 20 200	(1)e(1)	SAMPLER NAME AND SIGNATURE	GAZZIELS RASMAN	SIGNATURE of SAMPLER:
Pace Anal Acad Pace Anal Acad Section A	Client Information: Meskel & Associates Engineering, Inc. Report To:	S: 12348 Guara Court Copy To: SL ひって ひょしょ nville, FL 32225 32225 32225 32225	g.pastrana@outlook.com Purchase Order #:	riore: NONE Fax Project Name: JEA Beverly Hill Requested Due Date: DOD 0 いっついい		AMTRIX MATRIX Dinnking Water DW Water DW Water WW Water WW Water WW Product WW Product WW Product WW MATRIX CODE (see Valid codes to left) Product WW Product WW OI OI OI OI OI OI OI OI OI OI OI OI OI	- Tin ind-1 wr 6 10/29	2 1312 - TMW-2 WTC 10/29/14		5 4	U	6	10	11	ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION	EMPTY CONTAINERS		iter assor was restrict the the		NR 27 0	

Pace Analytical Fordia Laboratory	Document Name: Sample Condition Upon Receij Document No.:	ot Form	Document Revised: May 30, 2018 Issuing Authority: Pace Florida Quality Office				
	F-FL-C-007 rev. 13		Pace Fiolida Quality Onice				
Project #	WO#:3550		to and initials of porson:				
	PM: TSR D	ue Date: 11/06/1	19 Ite and Initials of person: amining contents:				
Project Manager: (CLIENT: MEASEN		bel:				
Client:	-		pH:				
Thermometer Used:	38 _{Date:} <u>10 </u>	<u>3//</u> 9 _{Time:} <u>O</u>	0:40nitials:				
State of Origin:	For W	projects, all containers verifi	ed to ≤6 °C				
Cooler #1 Temp.°C	(Correction Factor)	(Actual)	Samples on ice, cooling process has begun				
Cooler #2 Temp.°C(Visual)	(Correction Factor)	(Actual)	Samples on ice, cooling process has begun				
Cooler #3 Temp.°C(Visual)	(Correction Factor)	(Actual)	Samples on ice, cooling process has begun				
Cooler #4 Temp.°C(Visual)	(Correction Factor)	(Actual)	Samples on ice, cooling process has begun				
Cooler #5 Temp.°C(Visual)	(Correction Factor)	(Actual)	Samples on ice, cooling process has begun				
Cooler #6 Temp.°C(Visual)	(Correction Factor)	(Actual)	Samples on ice, cooling process has begun				
			Other				
	□ USPS □ Client		International Priority				
	Gender Third Party	Credit Card] Unknown				
racking #	/						
			<u> </u>				
ustody Seal on Cooler/Box Present:		ntact: 🗌 Yes 🗌 No	Ice: Wet Blue Dry None				
Packing Material: UBubble Wrap		Other					
amples shorted to lab (if Yes, complete)	Shorted Date:	Shorte	d Time: Qty:				
		Comments:					
hain of Custody Present	ZYES DNO DN/A						
hain of Custody Filled Out	AY95 ONO ON/A		1				
elinquished Signature & Sampler Name CC	//						
amples Arrived within Hold Time							
ush TAT requested on COC	MA Dres DINO DINA						
ufficient Volume	DYes □ No □N/A						
orrect Containers Used	ØYes □ No □N/A						
ontainers Intact ample Labels match COC (sample IDs & date/tim	ØYes □ No □N/A						
Ilection) Ilections needing acid/base preservation have	DYes □ No □N/A						
l containers needing acid/base preservation have lecked.	ves □ No □N/A		eservation Information:				
I Containers needing preservation are found to b ompliance with EPA recommendation:	e in ⊡Yes □ No □N/A	Lot #/Trace #:_	Time:				
Exceptions: VOA, Coliform, TOC,	The structure of the second seco	Initials:	Time:				
eadspace in VOA Vials? (>6mm):	□Yes □/No □N/A						
ip Blank Present:	□Yes □/No □N/A						
lient Notification/ Resolution: Person Contacted:		Date/Time:	×				
comments/ Resolution (use back for addit	ional comments):						
Project Manager Review:			Date:Page 28				

Appendix D

NOTICE OF INTENT TO USE THE GENERIC PERMIT FOR DISCHARGE OF GROUND WATER FROM DEWATERING OPERATIONS (subsection 62-621.300(2), F.A.C.)

PART I INSTRUCTIONS

A. Will dewatering operations be performed as part of construction activities?

NO Continue completing this form.

YES You may elect to obtain coverage under the Generic Permit for Stormwater Discharge from Large and Small Construction Activities (CGP), DEP Form 62-621.300(4)(b), which will cover both the construction and dewatering operations.

B. This Notice of Intent (NOI) form shall be completed and submitted to the industrial wastewater program at the local DEP office as part of the request for coverage under the Generic Permit for Discharge of Ground Water from Dewatering Operations subsection 62-621.300(2)(a), F.A.C., at least 14 days prior to planned commencement of discharge. For the purposes of this generic permit, 'dewatering operations' means temporarily lowering the water table by draining or pumping of ground water from activities such as excavations, building foundations, vaults, trenches and aquifer performance tests for exploratory purposes. Applicants should be familiar with the rule, generic permit document and instructions before completing this NOI form. Attach additional information on separate sheets as necessary.

- Submit this completed form and supporting documentation and the \$100.00 application fee to the industrial wastewater program at the local DEP office. Electronic submittal is preferred and may be available at http://www.dep.state.fl.us/water/wastewater/iw/iwforms.htm. To locate a local DEP office, go to: http://www.dep.state.fl.us/secretary/dist/default.htm.
- 2. Checks should be payable to the Florida Department of Environmental Protection. **DEP will not process this form without the appropriate fee.**
- 3. If an item is not applicable to your project, indicate "NA" in the appropriate space provided.

PART II DEWATERING INFORMATION:

A. Is the project site currently identified as contaminated, or is there a site within 500 feet of the dewatering project identified as contaminated, by a DEP or EPA cleanup/restoration program? You may use the Quick Links to DEP's Contamination Locator Map (CLM) and DEP's Institutional Controls Registry (ICR) Web Viewer to determine cleanup restoration status. You may access the CLM at: http://webapps.dep.state.fl.us/DepClnup/welcome.do, or http://ca.dep.state.fl.us/mapdirect/?focus=contamlocator. The ICR may be accessed at: http://www.dep.state.fl.us/waste/categories/brownfields/pages/ICR.htm, or http://ca.dep.state.fl.us/mapdirect/?focus=icr

YES Continue to B.

NO Continue to D.

B. Has the site been remediated?

YES Continue to D.

NO Continue to C.

C. Are the pollutants of concern (i.e. contamination) present in ground water at the dewatering project site at concentrations equal to or exceeding the surface water criteria in Rule 62-302.530?

YES Dewatering operations <u>do not</u> qualify for coverage under this generic permit. However, the site may qualify for coverage under Rule 62-621.300(1), F.A.C., or under an individual wastewater permit on the appropriate form listed in Rule 62-620.910, F.A.C.

NO Continue to D.

D. Have Best Management Practices (BMPs) for this generic permit been developed or addressed in an existing BMP plan in accordance to the requirements of this generic permit. BMPs must be implemented upon commencement of the discharge

YES Continue to Part III.

NO Your application cannot be processed until this item is complete.

NOTE: Chemical treatment is allowed as described in the Best Management Practices of the Generic Permit. However, sites that use cationic treatment chemicals are not eligible for coverage under Generic Permit for Discharge of Ground Water from Dewatering Operations unless concurrence from the applicable local DEP office is obtained in advance of the submittal of this NOI. Appropriate controls and implementation procedures designed to ensure that the use of cationic treatment chemicals will not cause or contribute to a violation of water quality standards shall be included in the site specific BMPs.

PART III DISCHARGE INFORMATION:

A. Please identify receiving surface water body.

PART IV SITE INFORMATION

A. COVERAGE STATUS:

1. Is this application for new coverage or for renewal of coverage under the generic permit?	New 🗌	Renewal 🗌
2. If this application is for renewal of coverage under the generic permit, provide the FLG No.	FLG No:	

B. NAME OF SITE:

Site Name:

C. PERMITTEE INFORMATION:

1. Name:	2. Tit	2. Title (Owner, Operator, Contractor, etc.):							
3. Phone No.: () -	4. Fax No	o.: ()	-						
4. Email Address:									
5. Street or P. O. Box:									
6. City or Town:		7. State:	8. Zip Code:						

D. SITE LOCATION INFORMATION:

1. Street, Route or Other Specific Identifier:				
2. County:				
3. City or Town:		4. State:	5. Zip Code:	
6. Latitude: ° ′ ″	7. Lon	7. Longitude: ° ′ ″		
8. If records required in accordance with Part V. of DEP Document 62-621.300(2)(a), are kept off-site, please provide the physical address of site where records will be kept. Note: location must be accessible for inspection of records by the Department.				

PART V CERTIFICATIONS

A. OWNER OR OPERATOR¹

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name & Official Title (type or print)

Signature

Telephone No.

Date signed

Email Address

¹Signatory requirements are contained in Rule 62-620.305, F.A.C.