2022 JEA IRP Stakeholder Engagement Meeting Series

Welcome

Raynetta Curry Marshall Chief Operating Officer

IRP Stakeholder Meeting Agenda – June 9

1) Welcome & Introductions

Raynetta Curry Marshall, Chief Operating Officer, JEA

2) Overview of System Operations Control Center

Garry Baker, Senior Director, Energy Operations, JEA

3) March 10 Meeting Recap, May Stakeholders Report Discussion Laura Schepis, Chief External Affairs Officer, JEA; Cantrece Jones, Black & Veatch Consultants

4) New Resource Options

Brad Kushner, Paul Maxwell, Darren Bishop Black & Veatch Consultants

5) Scenario Modeling and Sample Results

Brad Kushner, Black & Veatch Consultants

6) Open Discussion and Next Steps

Laura Schepis, Chief External Affairs Officer, JEA

March Stakeholder Meeting Recap, May Stakeholders Report Discussion

Laura Schepis Chief External Affairs Officer Cantrece Jones

Black & Veatch Consultant

Capacity Expansion Planning

How do we best choose among the new resource side options and DSM measures to meet load growth, reliability standards and environmental constraints at the lowest cost to customers?

A very complex problem...

- Changing load, fuel, carbon and other forecasts with each Scenario
- Capacity changes due to retirements, new gas repowering, new intermittent renewables
- Capital and operating costs for existing and new resources and DSM measures

Customers' Electric Demand and Resource Capacity Forecasts

Net Demand +15% Reserve Margin (MW)

FOR ILLUSTRATIVE PURPOSES ONLY

Stakeholder Feedback/Discussion

Questions

Stakeholder Insight

Report Overview

New Resource Options

Bradley Kushner, Paul Maxwell, Darren Bishop Black & Veatch Consultants

New Resource Options – Renewables

8

New Resource Options – Firming (Natural Gas)

Gas Turbine

- 91 MW 2x0 GE LM6000 PF SPRINT
- 111 MW 1x0 GE LMS100PA+
- 226 MW 1x0 GE 7FA.05
- 329 MW 1x0 GE 7HA.02

Reciprocating Engine

89 MW 5x0 Wartsila 18V50DF

Gas Turbine + Steam Turbine (Combined Cycle)

- 373 MW 1x1 GE 7FA.05
- 749 MW 2x1 GE 7FA.05
- 558 MW 1x1 GE 7HA.02
- 1119 MW 2x1 GE 7HA.02
- 1684 MW 3x1 GE 7HA.02
- 552 MW 1x1 GE 7HA.02 using Air Cooling instead of Water Cooling

Convert Existing Gas Turbine to Combined Cycle

- 318 MW Conversion of existing Gas Turbines at Greenland to 1x1 GE 7FA.05
- 638 MW Conversion of existing Gas Turbines at Greenland 2x1 GE 7FA.05

Future Technology Option – Hydrogen

Future Resource Options – Advanced Nuclear

Advanced Nuclear

- Relatively small-scale nuclear
- Technology in various stages of Nuclear Regulatory Commission licensing process
- Not yet commercially viable; anticipated to be available in 2035 timeframe

Small Modular Reactor

- 77 MW NUSCALE Power Module[™]
- 300 MW General Electric-Hitachi (GEH) BWRX-300
- 160 MW Holtec SMR-160
- NUSCALE currently projecting 2029 for first unit to be commercially operational

Potential Sites for Solar Resource Options

Florida Solar Potential

JEA

- Florida has good solar resource potential
- Strongest in mid-state and south
- Northern and panhandle areas are similar in strength to the rest of the southeast and some western U.S. areas

SOURCE: https://www.nrel.gov/gis/assets/images/solar-annual-ghi-2018-usa-scale-01.jpg

JEA already has eight solar sites in operation

- 1 12 MWs, 2010-2019
- One includes storage

Five new solar sites are under development

- 50 MW each
- JEA owns all the land and interconnects

JEA

Potential New Sites and Study Methodology

Scenario modeling results may call for significant amounts of new solar resource options

Deployment of 1,000 MW of new solar would require around 6,000 acres of land within and beyond the JEA service area*

We searched for sites for potential new solar resource options

- Used a GIS-based search tool for sites within Florida
- 22 different factors were evaluated (e.g. proximity to transmission, no wetlands, etc.)
- Scoring criteria were established for each factor
- Each site was scored based on how well it satisfies the criteria
- Scores were summed and sites were ranked by score

*Assuming 6 acres per MW which is a common industry assumption

Study Results and Next Steps

Results

- Over 100 potential sites have been identified and ranked
- Spread across Duval and 23 other remote counties
- Each site is 450 acres to support 75MW
- Capacity vs. energy

Next Steps

- Investigate additional local sites
- Estimate transmission improvements, costs*, losses and construction timing to deliver energy to JEA
- Include costs, losses, timing in modeling for each Scenario
 - *New solar is in demand by numerous other utilities. This competition may result in increased land costs

Resource Options at Existing Sites

Existing JEA Sites Being Considered for Development

SOURCE: Google Maps

JEA

Evaluation Results - SJRPP

SJRPP South (145 Acres)

Opportunities at SJRPP

145 Acres – SJRPP South

Existing transmission and distribution infrastructure in place

Solar

Insufficient land area (requires ~450 acres for 75 MW)

Biomass

Sufficient land area (requires ~43.5 acres for 50 MW)

Firming Gas-Fired Options

Sufficient land area for all 11 options

Battery Storage

Sufficient land area (requires ~5 acres for 75MW)

Evaluation Results – Northside Generating Station

JEA

Northside West (31.9 Acres) Existing Unit 1 and Unit 2

Northside South (9.9 Acres)

Opportunities at Northside

9.9 acres at NGS South

31.9 acres – NGS West Existing transmission and distribution infrastructure

Solar

Insufficient land area (requires ~450 acres for 75MW)

Battery Storage Sufficient land area (requires ~5 acres for 75MW)

Biomass

Northside South Insufficient land area

Northside West Insufficient land area

Firming Gas-Fired Options

Northside South Sufficient land area for the 5 smallest of 11 (peaking) options

Northside West Sufficient land area (requires ~5 acres for 75 MW)

Evaluation Results – Greenland Energy Center

Greenland South (10.5 Acres)

Greenland East (28.1 Acres)

Opportunities at Greenland

28.1 acres – GEC East

10.5 acres – GEC South Existing transmission and distribution infrastructure

Solar Options Insufficient land area (requires ~450 acres for 75MW)

Biomass Insufficient land area **Firming Options** Sufficient land area for all options

Battery Storage Options Sufficient land area (requires ~5 acres for 75MW)

Conversion/Upgrade Sufficient land area for 2 of 2 resource options

Scenario Modeling and Sample Results

Bradley Kushner Black & Veatch Consultants

Peak Demand and Energy Forecasts

IRP

Optimization through PLEXOS Modeling

The JEA electrical system is replicated within a PLEXOS database (a "Digital Twin")

- Properties and behaviors of the current and future physical system are converted into a mathematical system
- An optimization is then performed on the mathematical system to identify which resource options should be implemented in which years and in which numbers to satisfy the demand at the lowest total overall capital and operating cost

Optimization is for both resources (capacity expansion) and operation (operating simulation)

Optimization of a scenario can take several hours or days to run

JEA

Capacity Expansion Plan Results

Results of the expansion plan for each Scenario will illustrate the annual additions (new resource options) and subtractions (existing resource retirements) to the JEA resource portfolio

Open Discussion and Next Steps

Laura Schepis Chief External Affairs Officer

What is Important to You?

- What would Stakeholders like to see at upcoming Stakeholder meetings?
- Is there anything related to the electric industry you'd like to learn more about?
- Can we improve this experience for you in any way?

